Compare commits
102 Commits
refactor/o
...
feature/bu
| Author | SHA1 | Date | |
|---|---|---|---|
| 7849258d01 | |||
| dcb805eaca | |||
| 4d2a4b1526 | |||
| 95198e6687 | |||
| 852475ba77 | |||
| 33d3543c93 | |||
| 916172d0b2 | |||
| 94e33c0cba | |||
| 24ce1edb38 | |||
| 8fd540ddfc | |||
| 4ddcbd8000 | |||
| 8968586b0f | |||
| 8f641ab36e | |||
| 9ae32ca6a9 | |||
| ae18d1456a | |||
| ab17242804 | |||
| a5dec9c2fd | |||
| e271c59837 | |||
| f8d140a9b0 | |||
| 67a4b7038a | |||
| 18f9a4fec7 | |||
| 4796a2d5ca | |||
| f8578bc3f2 | |||
| a7583637e9 | |||
| 86762d0d50 | |||
| e2da700bcd | |||
| 466dff11d0 | |||
| 636123344b | |||
| 25d9d55044 | |||
| aafb939cbf | |||
| 3d01edb2d9 | |||
| 398ec829ae | |||
| ec69ed2ee5 | |||
| 3647aa599d | |||
| 1342ca2610 | |||
| 27ce796898 | |||
| cff5ec27f8 | |||
| 245be4a4f5 | |||
| 6b9efda0d2 | |||
| 29851ea167 | |||
| 0cd9ebdd04 | |||
| 4da8bcaec2 | |||
| 71ad2f09ff | |||
| 2f5a88345f | |||
| 5e851049b5 | |||
| c4fd7f1330 | |||
| 820da83397 | |||
| 14b24beb23 | |||
| 60f2ddb3d7 | |||
| c50d0eae52 | |||
| d375e0d208 | |||
| 9b128a3540 | |||
| 6df457a256 | |||
| bc443b884c | |||
| 8184ec06b4 | |||
| 926a64c3dd | |||
| 29f9bccfd3 | |||
| 7d7580a123 | |||
| 59d457e9ae | |||
| 97ccb2a9ac | |||
| 1ab2c06336 | |||
| f51672c6a9 | |||
| 8e3f415cb4 | |||
| cdcb4796f7 | |||
| 24bc3afd2e | |||
| 4f78de64ba | |||
| fe050897dd | |||
| e075ff580d | |||
| 90e756ad28 | |||
| faf8e7c83a | |||
| 772f9c7df3 | |||
| e066bc4786 | |||
| cc681ae08a | |||
| 138e17503a | |||
| 20a37dda17 | |||
| 8645d2bdc4 | |||
| d8055752d5 | |||
| 21bbbacbbe | |||
| d18c87a051 | |||
| a89154a1c2 | |||
| c662714997 | |||
| 6a4492ef37 | |||
| 85815d957b | |||
| ec6ca92360 | |||
| f25464df03 | |||
| 2ceddb2bbf | |||
| 1228a79cae | |||
| 425e857ba9 | |||
| 588fa29484 | |||
| c14b07d24f | |||
| c61fa2b917 | |||
| 9dac569ad6 | |||
| 63d6a67d97 | |||
| c79e016503 | |||
| d03a00cbce | |||
| 5f30ab6c2f | |||
| 35d3110818 | |||
| 3d85dda4db | |||
| 02908f114c | |||
| c2a0b6c026 | |||
| 09a4003839 | |||
| 7c689f6023 |
12
.gitea/scripts/setup_editor.sh
Normal file
12
.gitea/scripts/setup_editor.sh
Normal file
@ -0,0 +1,12 @@
|
||||
#!/bin/bash
|
||||
# Config: The exact engine version this game project depends on
|
||||
# You update this hash when you upgrade the engine
|
||||
ENGINE_VERSION="a90daf08c2bb52d6cb4ba67bb5cbe09d79b2c4eb"
|
||||
|
||||
echo "Fetching Custom Editor [${ENGINE_VERSION}]..."
|
||||
|
||||
# Download from your Registry
|
||||
curl -O "https://gitea.212.63.210.91.nip.io/api/packages/seedlingattempt/generic/godot-editor-windows/${ENGINE_VERSION}/godot-editor-windows.zip"
|
||||
|
||||
unzip -o godot-editor-windows.zip
|
||||
echo "Editor ready! Run ./godot.windows.editor...exe to start."
|
||||
66
.gitea/workflows/build-game.yaml
Normal file
66
.gitea/workflows/build-game.yaml
Normal file
@ -0,0 +1,66 @@
|
||||
name: Release Game Client
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- '.gitea/workflows/build-game.yaml'
|
||||
- '.gitea/**/*.sh'
|
||||
tags:
|
||||
- 'v*'
|
||||
|
||||
jobs:
|
||||
export-windows:
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: ubuntu:22.04
|
||||
steps:
|
||||
- name: Checkout Game
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install Dependencies
|
||||
run: apt-get update && apt-get install -y unzip wget zip
|
||||
|
||||
- name: Download Engine Templates
|
||||
env:
|
||||
# The specific engine version this game needs
|
||||
ENGINE_HASH: "a90daf08c2bb52d6cb4ba67bb5cbe09d79b2c4eb"
|
||||
# This string MUST match what your custom engine reports as its version
|
||||
# Example: "4.3.stable" or "4.3.stable.mygame"
|
||||
GODOT_VERSION_STRING: "4.6"
|
||||
run: |
|
||||
echo "Downloading templates..."
|
||||
wget "https://gitea.212.63.210.91.nip.io/api/packages/seedlingattempt/generic/godot-templates/${ENGINE_HASH}/windows_templates.tpz"
|
||||
|
||||
echo "Installing templates..."
|
||||
# Godot looks for templates in ~/.local/share/godot/export_templates/{VERSION}/
|
||||
TEMPLATE_PATH="$HOME/.local/share/godot/export_templates/${GODOT_VERSION_STRING}"
|
||||
mkdir -p "$TEMPLATE_PATH"
|
||||
|
||||
# Unzip our TPZ directly into that folder
|
||||
unzip windows_templates.tpz -d "$TEMPLATE_PATH"
|
||||
|
||||
# Rename them to standard names if they aren't already
|
||||
# (Your publish script already renamed them to windows_release_x86_64.exe, so this is fine!)
|
||||
|
||||
- name: Download Headless Editor (For Exporting)
|
||||
env:
|
||||
ENGINE_HASH: "a90daf08c2bb52d6cb4ba67bb5cbe09d79b2c4eb"
|
||||
run: |
|
||||
wget "https://gitea.212.63.210.91.nip.io/api/packages/seedlingattempt/generic/godot-editor-windows/${ENGINE_HASH}/godot-editor-windows.zip"
|
||||
unzip godot-editor-windows.zip
|
||||
chmod +x godot.windows.editor*.exe
|
||||
# Create a simple alias
|
||||
mv godot.windows.editor*.exe godot_headless
|
||||
|
||||
- name: Export Game
|
||||
run: |
|
||||
mkdir -p build/windows
|
||||
|
||||
echo "Exporting..."
|
||||
# The preset name "Windows Desktop" must match your export_presets.cfg
|
||||
./godot_headless --headless --export-release "Windows Desktop" build/windows/game.exe
|
||||
|
||||
- name: Upload Game Artifact
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: windows-client
|
||||
path: build/windows
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,6 +1,6 @@
|
||||
# Godot 4+ specific ignores
|
||||
.godot/
|
||||
.vscode/
|
||||
/android/
|
||||
|
||||
*.tmp
|
||||
/export/
|
||||
0
.gitmodules
vendored
Normal file
0
.gitmodules
vendored
Normal file
52
.vscode/development_status/Development_Status_2025-10-12.md
vendored
Normal file
52
.vscode/development_status/Development_Status_2025-10-12.md
vendored
Normal file
@ -0,0 +1,52 @@
|
||||
# Project "Millimeters of Aluminium" Development Log
|
||||
## Overview
|
||||
|
||||
The project is undergoing a major architectural refactor to move from a monolithic Spaceship class to a fully modular, component-based system. The foundation for this new architecture, centered around Module, Component, and Station classes, is now in place. The next steps involve migrating legacy systems into this new paradigm.
|
||||
|
||||
## I. Fully Implemented & Stable Systems
|
||||
|
||||
Custom Physics Core: All physical objects now inherit from a custom OrbitalBody2D class, which handles mass aggregation and force integration. The physics loop is correctly disabled in the editor to prevent errors.
|
||||
|
||||
Modular Ship Construction:
|
||||
|
||||
Module as Root: The Module class now serves as the root for ship assemblies, managing its own list of structural pieces and components without needing container nodes.
|
||||
|
||||
Builder Plugin: The editor plugin is updated to work with this new architecture, allowing the placement of StructuralPiece nodes directly onto Module nodes.
|
||||
|
||||
Character & Interaction Foundation:
|
||||
|
||||
Zero-G Movement: The PilotBall character has a state machine for handling movement inside ship interiors, including sluggish zero-G floating and direct control on ladders.
|
||||
|
||||
Generic Station Component: A StationComponent class has been implemented. It serves as a generic hardware terminal that characters can interact with.
|
||||
|
||||
Data-Driven UI Architecture:
|
||||
|
||||
Databank Resource: A Databank Resource class has been created. It acts as "software," holding a reference to a UI scene that can be loaded by a station.
|
||||
|
||||
## II. Work-In-Progress (WIP) and Planned Systems
|
||||
|
||||
This list details systems we have designed but are not yet fully implemented in the code.
|
||||
|
||||
System Migration to Databanks:
|
||||
|
||||
Helm/Flight Controls: The logic from the old ThrusterController.gd needs to be moved into a HelmUI.tscn scene and driven by a HelmDatabank.
|
||||
|
||||
Navigation Computer: The UI has been moved, but the extensive planning and calculation logic from NavigationComputer.gd needs to be transferred to NavUI.gd.
|
||||
|
||||
Fuel and Life Support: The FuelSystem and LifeSupport nodes are still part of the old Spaceship.tscn. They need to be fully redesigned as Component classes (e.g., FuelTank, AtmosphereProcessor).
|
||||
|
||||
Component Wiring System:
|
||||
|
||||
Signal/Socket Advertising: Components and Databanks need to be updated with get_input_sockets() and get_output_signals() functions.
|
||||
|
||||
Wiring Data Storage: The Module class needs a wiring_data array to store the connections made in the builder.
|
||||
|
||||
Builder UI: A visual wiring interface needs to be added to the module builder plugin.
|
||||
|
||||
Orbital Stability Test:
|
||||
|
||||
Ghost Simulator: A GhostSimulator class needs to be created to run predictive, in-memory physics calculations.
|
||||
|
||||
Test Runner: An orbital_stability_test.tscn scene and script are needed to orchestrate the test, compare live vs. ghost results, and generate a report.
|
||||
|
||||
Full Spaceship Class Retirement: The final step will be to delete Spaceship.tscn and Spaceship.gd once all their logic and systems have been successfully migrated to the new modular architecture.
|
||||
78
.vscode/development_status/Development_Status_2025-10-14.md
vendored
Normal file
78
.vscode/development_status/Development_Status_2025-10-14.md
vendored
Normal file
@ -0,0 +1,78 @@
|
||||
|
||||
## Development Progress Report 14/10 - 25
|
||||
### Overview
|
||||
The project has successfully undergone a foundational architectural refactor. The legacy monolithic Spaceship class has been deprecated in favor of a fully modular, component-based architecture designed for multiplayer scalability. The core gameplay loop of a player spawning, possessing a character, using a station, and controlling a ship's systems via a diegetic UI is now functional. The project is now entering "Cycle 2" of development, focusing on unifying the physics system and migrating the remaining legacy gameplay logic into the new architecture.
|
||||
|
||||
### ✅ Implemented Systems & Features
|
||||
#### 1. Core Architecture
|
||||
Modular Ships: Ships are now built around a root Module class which extends OrbitalBody2D. The Module dynamically understands its structure by finding its Component and StructuralPiece children, removing the need for rigid container nodes.
|
||||
|
||||
Custom Physics Body: The OrbitalBody2D class serves as the base for all physical objects in the simulation, including ship parts and modules. It correctly handles force routing from child components to the root physics body and includes a robust, deferred check to warn if a child class forgets to call super() in its _ready function.
|
||||
|
||||
Dynamic Inertia Calculation: The ship's moment of inertia is now calculated realistically based on the mass and distribution of all its component parts in local space, leading to more authentic rotational physics.
|
||||
|
||||
#### 2. Player Control & Multiplayer Foundation
|
||||
PlayerController/Pawn Architecture: A multiplayer-ready control scheme has been implemented.
|
||||
|
||||
The PlayerController class is responsible for capturing raw input and sending it to the server via RPCs.
|
||||
|
||||
The PilotBall (the "Pawn") is now a "dumb" character that only acts on commands received from its controller, with all direct calls to the Input singleton successfully removed.
|
||||
|
||||
Dynamic Spawning & Possession: The GameManager now manages the game's startup sequence. It dynamically spawns a PlayerController and a default ship (Tube.tscn), and then correctly "possesses" the PilotBall within the ship with its corresponding controller.
|
||||
|
||||
Local Server Initialization: The GameManager correctly initializes a local ENet server, which enables the multiplayer authority system (is_multiplayer_authority()) to function correctly in a single-player testing environment.
|
||||
|
||||
#### 3. Station & UI Systems
|
||||
Modular UI Framework: The "databank" system has been fully implemented and separated into three distinct resource types:
|
||||
|
||||
ControlPanel: A resource representing a physical UI element (e.g., a screen, a lever).
|
||||
|
||||
Databank: A resource representing a "datashard" which contains pure logic in a script.
|
||||
|
||||
SystemStation: The physical station component that acts as a "chassis," hosting panels and databanks.
|
||||
|
||||
Persistent Station Logic: The SystemStation has been refactored to instantiate datashard logic (_ready) once for its entire lifetime, allowing for background processing. UI Panels are created ephemerally only when a player occupies the station.
|
||||
|
||||
Functional Helm: The helm is partially migrated.
|
||||
|
||||
A HelmLogicShard contains the attitude-hold (PD controller) and calibration logic.
|
||||
|
||||
ControlPanels for a throttle lever, buttons, and a status readout are functional.
|
||||
|
||||
The station correctly wires the panels to the helm shard at runtime, allowing the player to control the ship's main engine and RCS thrusters.
|
||||
|
||||
Functional Sensor Display: The sensor/map system is partially migrated.
|
||||
|
||||
A SensorSystemShard is responsible for gathering all trackable bodies in the system.
|
||||
|
||||
A refactored SensorPanel acts as a "dumb" display that visualizes the "sensor feed" signal it receives.
|
||||
|
||||
The ShipStatusShard correctly displays the ship's velocity and rotational data on the ReadoutScreen and also displays the currently selected target from the map.
|
||||
|
||||
### ❌ Not Yet Implemented / Pending Tasks
|
||||
#### 1. Physics & Simulation (Cycle 2 Priority)
|
||||
|
||||
CelestialBody Refactor: All celestial bodies (Planets, Moons, etc.) still inherit from Godot's RigidBody2D and use the _integrate_forces callback. They must be refactored to extend our custom OrbitalBody2D to create a single, stable physics simulation.
|
||||
|
||||
Astronomical vs. Ship Scale: A system for scaling forces needs to be designed and implemented to allow massive planets and lightweight ships to coexist and interact realistically within the same simulation.
|
||||
|
||||
Simulation Stability Test: The proposed GhostSimulator and test runner for verifying long-term orbital stability has not yet been created.
|
||||
|
||||
Interior Physics: The simulation does not yet account for how the ship's acceleration affects characters or loose objects inside it.
|
||||
|
||||
#### 2. System & Feature Migration
|
||||
|
||||
Full Helm/Nav Migration: The complex maneuver planning logic (e.g., Hohmann transfers) still resides in the legacy navigation_computer.gd script and needs to be migrated into one or more Databank shards.
|
||||
|
||||
Thruster Refactor: The Thruster component still uses a simple turn_on()/turn_off() model. It needs to be refactored to accept a variable set_throttle(value) command for more precise control.
|
||||
|
||||
Retirement of Legacy Scenes/Scripts: The old Spaceship.tscn, spaceship.gd, thruster_controller.gd, and navigation_computer.gd files are still in the project and need to be fully removed once their logic is migrated.
|
||||
|
||||
#### 3. Planned Features (Future Cycles)
|
||||
Wiring System: The foundational classes exist, but the in-game system for players to visually wire panels to databanks, and the editor tools to support this, have not been started.
|
||||
|
||||
Character & Movement: The current PilotBall is a placeholder. The planned humanoid character, grapple points, and EVA gameplay are not yet implemented.
|
||||
|
||||
Core Gameplay Systems: The foundational systems for Electricity, Life Support (pressurization), Fuel, Character Damage, and Inventory/Pickupable Objects have not yet been created.
|
||||
|
||||
Multiplayer Connectivity: While the architecture supports it, the UI and logic for multiple players to connect to a server (e.g., a main menu with a "Join Game" option) do not yet exist.
|
||||
52
.vscode/development_status/Development_Status_2025-10-16.md
vendored
Normal file
52
.vscode/development_status/Development_Status_2025-10-16.md
vendored
Normal file
@ -0,0 +1,52 @@
|
||||
|
||||
## Project Development Status Update 16/10 - 25
|
||||
### Overview
|
||||
The project has successfully completed a major architectural refactor, establishing a stable and scalable foundation for the simulation. The core physics model has been unified under a custom OrbitalBody2D class and a hierarchical Barycenter system, which has resolved previous orbital instabilities. The ship's control systems are being migrated to a flexible, data-driven "databank" architecture, and the UI is now managed by a robust grid-based layout system. The focus can now shift to migrating the remaining legacy systems and building out core gameplay features on this new foundation.
|
||||
|
||||
### ✅ Implemented Systems & Features
|
||||
#### 1. Hierarchical Physics Simulation (Barycenter Architecture)
|
||||
Global & Local Grids: The simulation is now anchored by a StarSystem root node, which defines the global grid. Procedurally generated planetary systems are encapsulated within Barycenter nodes, which act as moving "local grids" for their contents. This has stabilized the orbits of moons and planets.
|
||||
|
||||
Physics Roles: A clear distinction has been made between physics actors and passive bodies.
|
||||
|
||||
Barycenter nodes are the primary physics objects in the global simulation, inheriting from OrbitalBody2D and responding to gravitational forces.
|
||||
|
||||
Celestial bodies (Star, Planet, Moon) are now simple Node2Ds that provide mass data to their parent Barycenter but do not run their own physics integration, solving the "triple velocity" bug.
|
||||
|
||||
Centralized Physics Loop: All gravity calculations are now managed by the OrbitalMechanics singleton in a multi-stage _physics_process loop, which handles global (Barycenter-to-Star) and local (Moon-to-Planet) interactions separately.
|
||||
|
||||
#### 2. Procedural Generation & Player Spawn
|
||||
Generator as a Tool: The StarSystemGenerator has been refactored into a RefCounted class that acts as a factory, cleanly separating the generation process from the final StarSystem product.
|
||||
|
||||
Stable Orbit Placement: The generator now uses astrophysical concepts like the Roche Limit and Hill Sphere (abstracted into helper functions in OrbitalMechanics) to procedurally place planets and moons in stable, non-overlapping orbits.
|
||||
|
||||
Lagrange Point Spawning: The player ship is now correctly spawned at the L4 or L5 Lagrange point of the outermost planet, with the proper initial velocity to maintain a stable position.
|
||||
|
||||
#### 3. Data-Driven Ship Systems (Databanks)
|
||||
Autopilot Migration: The core logic for planning and executing maneuvers has been successfully migrated from the legacy ThrusterController into a series of decoupled databank shards:
|
||||
|
||||
NavSelectionDatabank: Stores the current navigation target.
|
||||
|
||||
ManeuverPlannerDatabank: Calculates maneuver burn plans (e.g., Hohmann transfers).
|
||||
|
||||
AutopilotDatabank: Executes the steps of a received plan.
|
||||
|
||||
Modular UI Layout: The SystemStation now functions as a layout manager, instancing and positioning UI panels based on grid data defined in ControlPanel resources. This has removed hardcoded positions and allows for flexible, data-driven UI configurations.
|
||||
|
||||
#### 4. Orbit Projection & Debugging
|
||||
Unified Projection Function: The OrbitalMechanics library now contains a single, generalized project_n_body_paths function. This function can run a "ghost simulation" on any arbitrary set of bodies in either local or global space to generate predictive orbital paths for the map panel.
|
||||
|
||||
Orrery View: A dedicated debugging tool, the OrreryView scene, has been created to provide a clean, interactive chart for inspecting procedurally generated star systems without the interference of game UI or camera logic.
|
||||
|
||||
### ⏳ Planned & Discussed Future Implementations
|
||||
#### 1. Advanced Physics Optimization
|
||||
Centralized N-Body Calculation: The plan is to have the OrbitalMechanics singleton manage all gravity calculations in a single, authoritative loop each frame. This will enable advanced optimizations and debugging, such as a "force queue" to prevent calculation errors.
|
||||
|
||||
Sphere of Influence (SOI) Model: For dynamic objects like the player's ship, we will implement an SOI system. The ship will calculate its gravity against the full system hierarchy when in "deep space" but will switch to calculating against only the local bodies (e.g., a planet and its moons) when it enters a Barycenter's sphere of influence.
|
||||
|
||||
Performance Culling & Caching: For performance-intensive scenarios like asteroid belts, we've discussed implementing timers to cache and reuse negligible force calculations over several frames, only recalculating when necessary.
|
||||
|
||||
#### 2. Component "API" & Wiring System
|
||||
Component Contracts: To facilitate the upcoming visual wiring system, we will formalize the "API" for ControlPanel and Databank resources. This will be done by creating new scripts that extend the base classes and override the get_input_sockets() and get_output_signals() functions to explicitly define what signals and functions each component provides.
|
||||
|
||||
Static vs. Resource-Based API: We've concluded that using extended Resource scripts to define these APIs is superior to using static functions on the node scripts. This decouples the data contract from the implementation and allows a single scene to be used with multiple different data configurations, which is critical for a flexible wiring system.
|
||||
64
.vscode/development_status/Development_Status_2025-10-25.md
vendored
Normal file
64
.vscode/development_status/Development_Status_2025-10-25.md
vendored
Normal file
@ -0,0 +1,64 @@
|
||||
|
||||
## Project Development Status Update: 31/10/25
|
||||
|
||||
### 3D Character Controller & Movement Tech Demo (Cycle 3)
|
||||
|
||||
Work has proceeded on a tech demo for the 3D character controller, establishing a robust, physics-based system for zero-G movement. The architecture has been refactored to prioritize a clean separation of concerns, with a central "pawn" acting as a physics integrator and modular "controllers" acting as the "brains" for different movement types.
|
||||
|
||||
### ✅ Implemented Features
|
||||
|
||||
#### Pawn/Controller Architecture: The character is split into several key classes:
|
||||
|
||||
CharacterPawn3D: The core CharacterBody3D. It acts as a "dumb" physics integrator, holding velocity and angular_velocity, integrating rotation, and calling move_and_slide(). It no longer contains movement-specific state logic.
|
||||
|
||||
PlayerController3D: Gathers all hardware input (keyboard, mouse) and packages it into KeyInput dictionaries (pressed, held, released) to send to the pawn via RPC.
|
||||
|
||||
EVAMovementComponent: Refactored into a "dumb tool". It exposes functions like apply_thrusters() and apply_orientation() which are called by other controllers.
|
||||
|
||||
ZeroGMovementComponent: This is now the "brain" for all zero-G movement. It receives all inputs from the pawn and contains its own internal state machine (IDLE, REACHING, GRIPPING, CLIMBING, CHARGING_LAUNCH).
|
||||
|
||||
#### Contextual Movement Logic:
|
||||
|
||||
The ZeroGMovementComponent decides when to use the EVA suit. In its IDLE state, it checks for fresh movement input (movement_input_was_neutral) before calling the EVAMovementComponent's apply_thrusters function.
|
||||
|
||||
This successfully implements "coast on release," where releasing a grip (_release_current_grip) flags the movement input as "stale," preventing the EVA suit from engaging even if the key is still held.
|
||||
|
||||
#### EVA/Jetpack Controls:
|
||||
|
||||
The EVAMovementComponent provides force-based linear movement (WASD, Shift/Ctrl) and torque-based angular roll (Q/E).
|
||||
|
||||
A body-orientation function (_orient_pawn) allows the pawn to auto-align with the camera's forward direction.
|
||||
|
||||
#### Physics-Based Grip System:
|
||||
|
||||
GripArea3D: A composition-based Area3D node provides the interface for all grabbable objects. It requires its parent to implement functions like get_grip_transform and get_push_off_normal.
|
||||
|
||||
Grip Detection: The CharacterPawn3D uses a GripDetector Area3D to find GripArea3D nodes in range and passes this nearby_grips list to the ZeroGMovementComponent.
|
||||
|
||||
GRIPPING State: This state is now fully physics-based. Instead of setting the pawn's global_transform, the _apply_grip_physics function uses a PD controller to apply linear forces (to move to the offset position) and angular torques (to align with the grip's orientation).
|
||||
|
||||
Grip Orientation: The gripping logic correctly calculates the closest of two opposing orientations (e.g., "up" or "down" on a bar) by comparing the pawn's current up vector to the grip's potential up vectors.
|
||||
|
||||
Grip Rolling: While in the GRIPPING state, the player can use Q/E to override the auto-orientation and apply roll torque around the grip's axis.
|
||||
|
||||
#### Physics-Based Climbing:
|
||||
|
||||
CLIMBING State: This state applies lerp'd velocity to move the pawn, allowing it to interact with physics.
|
||||
|
||||
Climb Targeting: The _find_best_grip function successfully identifies the next valid grip within a configurable climb_angle_threshold_deg cone.
|
||||
|
||||
Handover: Logic in _process_climbing correctly identifies when the pawn is close enough to the next_grip_target to _perform_grip_handover.
|
||||
|
||||
Climb Release: The pawn will correctly release its grip and enter the IDLE state (coasting) if it moves past the current_grip by release_past_grip_threshold without a new target being found.
|
||||
|
||||
### ❌ Not Yet Implemented / Pending Tasks
|
||||
|
||||
REACHING State: The REACHING state exists but its logic (_process_reaching) is a stub that instantly calls _try_initiate_reach. The full implementation (e.g., procedural animation/IK moving the hand to the target) is pending.
|
||||
|
||||
CHARGING_LAUNCH State: The state exists and the execution logic is present (_handle_launch_charge, _execute_launch), but the state transition logic in _update_state does not currently allow entering this state from GRIPPING (it's overshadowed by the _start_climb check).
|
||||
|
||||
Ladder (3D) & Walking (3D) States: The CharacterPawn3D has high-level states for GRIPPING_LADDER and WALKING, but the movement functions (_apply_ladder_movement, _apply_walking_movement) are stubs.
|
||||
|
||||
Generic Surface Grab: The TODO to allow the ZeroGMovementComponent to grab any physics surface (not just a GripArea3D) is not implemented.
|
||||
|
||||
EVA Stabilization: The _apply_stabilization_torques function in EVAMovementComponent is still a placeholder.
|
||||
89
.vscode/development_status/Development_Status_2025-11-21.md
vendored
Normal file
89
.vscode/development_status/Development_Status_2025-11-21.md
vendored
Normal file
@ -0,0 +1,89 @@
|
||||
# Development Status Report - 2025-11-21
|
||||
|
||||
## Overview
|
||||
|
||||
Significant progress was made on the Unified Build System and the In-Game Builder, moving away from purely editor-based construction. We successfully implemented procedural geometry generation for structural pieces and refactored the snapping logic to support the upcoming geodesic structures. Networking logic also saw crucial stability fixes.
|
||||
|
||||
## Completed Features & Implementations
|
||||
|
||||
### 1. Unified Build System Foundation
|
||||
|
||||
- StructureData Resource: Implemented a robust resource-based definition system for ship parts. This decouples the "DNA" of a part (mesh, collider, mounts, health) from its scene instantiation, allowing shared logic between the Editor Plugin and the In-Game Builder.
|
||||
|
||||
- PieceMount Logic: Formalized attachment points into a dedicated PieceMount class (inheriting Area3D). This replaced the ad-hoc dictionary system, providing type safety and better collision filtering.
|
||||
|
||||
- ProceduralPiece Generator: Created a script that dynamically generates 3D meshes and collision shapes based on parameters (e.g., triangle vs. square, size, thickness) defined in StructureData. This supports:
|
||||
|
||||
- Extruded 3D geometry (thickness) rather than flat planes.
|
||||
|
||||
- Convex collision hull generation.
|
||||
|
||||
- "Opaque Blueprint" preview materials (semi-transparent, emissive).
|
||||
|
||||
### 2. In-Game Builder (PlayerController3D)
|
||||
|
||||
- Build Mode State: Implemented a toggleable Build Mode (B key) in PlayerController3D.
|
||||
|
||||
- Piece Selection: Added logic to select pieces via hotkeys (1 = Square, 2 = Triangle), instantiate a preview "ghost," and switch its material.
|
||||
|
||||
- Raycast Snapping: Implemented a physics-based raycast/sweep to detect existing ship modules and mounts.
|
||||
|
||||
- Visual Feedback: Added color-coded feedback for the preview ghost:
|
||||
|
||||
- Cyan: Floating (no snap target found).
|
||||
|
||||
- Geen: Snapped (aligned with a valid mount).
|
||||
|
||||
### 3. Snapping Logic Refactor
|
||||
|
||||
- SnappingTool Class: Created a dedicated static helper class for snapping math.
|
||||
|
||||
- Shape Cast Sweep: Replaced simple raycasting with a sphere_cast (radius 0.2m). This adds "thickness" to the cursor, making it much easier to hit thin structural elements like struts or small mounts.
|
||||
|
||||
- Transform Alignment: Implemented matrix math to align a new piece's mount with a target mount, respecting position, normal (facing direction), and up-vector (roll/orientation).
|
||||
|
||||
### 4. Networking Stability (Previous Session)
|
||||
|
||||
- Server Authority Enforcement: enforced strict server authority on CharacterPawn3D, removing client-side overrides that caused "fighting" and stutter.
|
||||
|
||||
- Relative Velocity Sync: Implemented logic to sync local_velocity relative to the parent ship instead of global velocity. This prevents pawns from "falling out the back" of moving ships during network jitter.
|
||||
|
||||
- Input Serialization: Fixed RPC errors by converting custom KeyInput objects to Dictionaries before transmission.
|
||||
|
||||
## Pending / In-Progress
|
||||
|
||||
- Mount Orientation Constraints: The snapping tool currently aligns normals but needs refinement to strictly enforce edge length compatibility and specific mount types (e.g., preventing a 2m edge from snapping to a 1m edge).
|
||||
|
||||
- Module Persistence: The logic for creating a new Module when building in empty space works in memory but needs testing for persistence and saving.
|
||||
|
||||
- Collision Layers: Need to verify that all PieceMount nodes are consistently on the correct physics layer (1 << 14) to ensure the snapping sweep always finds them.
|
||||
|
||||
## Discussion & Direction Changes
|
||||
|
||||
### Shift to "Geodesic & Procedural" Building
|
||||
|
||||
We moved away from the initial "Voxel Grid" concept for ship hulls.
|
||||
|
||||
- Old Direction: Ships built on a strict integer grid (Minecraft-style but with slopes).
|
||||
|
||||
- New Direction: A node-based "Geodesic" system. Pieces connect Node-to-Node (Mount-to-Mount) at arbitrary angles. This allows for complex shapes (hexagonal cylinders, spheres, rings) and supports the "Industrial/Hard Sci-Fi" aesthetic better.
|
||||
|
||||
- Implication: The building tool no longer relies on grid_step for positioning. It relies entirely on the SnappingTool to calculate transforms based on the geometry of the mounting points.
|
||||
|
||||
### Shift to "Server Authoritative" Networking
|
||||
|
||||
We abandoned the "Client Authoritative" movement for pawns to solve synchronization issues.
|
||||
|
||||
- Old Plan: Client moves pawn, Server accepts pos. (Caused hacking risks and desync with physics objects).
|
||||
|
||||
- New Plan: Server simulates physics. Client sends inputs. MultiplayerSynchronizer interpolates the result. To combat latency feel, we are using Visual Interpolation (detaching camera/mesh from the physics body) rather than full Client-Side Prediction (CSP) for this milestone.
|
||||
|
||||
### Manufacturing & Blueprints
|
||||
|
||||
We discussed that the StructureData resource is the key enabler for the manufacturing gameplay loop. By defining parts as data (Resources), we can easily:
|
||||
|
||||
1. Store a "Blueprint" as a list of StructureData references + Transforms.
|
||||
|
||||
2. Have a manufacturing machine consume resources to produce a "Crate" containing a StructureData item.
|
||||
|
||||
3. Have the player pick up that item and use it to place the ProceduralPiece.
|
||||
6
.vscode/settings.json
vendored
Normal file
6
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
{
|
||||
"godotTools.editorPath.godot4": "./godot_engine/bin/godot.windows.editor.double.x86_64.console.exe",
|
||||
"search.exclude": {
|
||||
"/godot_engine": true
|
||||
}
|
||||
}
|
||||
@ -1,33 +1,246 @@
|
||||
# Project "Stardust Drifter" Status Summary
|
||||
# Project "Millimeters of Aluminium" Development Log
|
||||
## Overview
|
||||
|
||||
## Implemented Systems
|
||||
The project is undergoing a major architectural refactor to move from a monolithic Spaceship class to a fully modular, component-based system. The foundation for this new architecture, centered around Module, Component, and Station classes, is now in place. The next steps involve migrating legacy systems into this new paradigm.
|
||||
|
||||
- Core Physics Simulation: The OrbitalMechanics singleton successfully handles a robust N-body gravity simulation. All celestial bodies and the ship correctly inherit from OrbitalBody2D, ensuring they are part of the same physics simulation.
|
||||
## I. Fully Implemented & Stable Systems
|
||||
|
||||
- Procedural World Generation: The StarSystemGenerator creates a dynamic solar system with stars, planets, moons, and stations in stable, nested orbits.
|
||||
Custom Physics Core: All physical objects now inherit from a custom OrbitalBody2D class, which handles mass aggregation and force integration. The physics loop is correctly disabled in the editor to prevent errors.
|
||||
|
||||
- Modular Ship Systems: A foundation for modular ships is in place. The Spaceship class is a central hub for subsystems like FuelSystem and LifeSupport. The ThrusterController is highly advanced, capable of self-calibrating to a ship's unique mass and inertia.
|
||||
Modular Ship Construction:
|
||||
|
||||
- Navigation & Map UI: A functional map UI exists, with zoom-to-cursor and click-and-drag panning. It includes dynamic culling and can be locked onto any celestial body. The NavigationComputer can calculate and execute Hohmann transfers.
|
||||
Module as Root: The Module class now serves as the root for ship assemblies, managing its own list of structural pieces and components without needing container nodes.
|
||||
|
||||
- Editor Plugin (WIP): We've started building an editor plugin to handle ship construction. The core functionality for creating a custom dock and listening for editor input has been implemented, but the full UI and piece-placement logic still needs to be completed.
|
||||
Builder Plugin: The editor plugin is updated to work with this new architecture, allowing the placement of StructuralPiece nodes directly onto Module nodes.
|
||||
|
||||
## Designed but Unimplemented Systems
|
||||
Character & Interaction Foundation:
|
||||
|
||||
- Free-Form Module Construction: The core building system is designed but not yet fully implemented. The Module and StructuralPiece scripts are in place, but the physics recalculation and room sealing logic is not yet finished.
|
||||
Zero-G Movement: The PilotBall character has a state machine for handling movement inside ship interiors, including sluggish zero-G floating and direct control on ladders.
|
||||
|
||||
- Unified RigidBody2D Character Controller: The CrewMember.tscn scene and the logic for Spaceship.gd to simulate G-forces still need to be created and integrated.
|
||||
Generic Station Component: A StationComponent class has been implemented. It serves as a generic hardware terminal that characters can interact with.
|
||||
|
||||
- Economy, Missions, and Factions: The high-level design for a multi-faction world, a mission system, and an economy exists, but no code or assets have been created for these features yet.
|
||||
Data-Driven UI Architecture:
|
||||
|
||||
- Multi-Depth Modules: Your idea for a 2.5D building system with multiple depth layers and a "flip" function is designed but has been tabled for later.
|
||||
Databank Resource: A Databank Resource class has been created. It acts as "software," holding a reference to a UI scene that can be loaded by a station.
|
||||
|
||||
### Planned Systems: Asymmetric N-Body Physics Simulation
|
||||
## II. Work-In-Progress (WIP) and Planned Systems
|
||||
|
||||
To handle the vast difference in scale between celestial bodies and player ships, the physics simulation will be refactored to use an asymmetric N-body approach. This means that while all celestial bodies will affect each other, smaller bodies like ships and stations will only be affected by the gravity of larger celestial bodies. This will allow the use of realistic masses for ship components while maintaining stable and predictable orbits for planets and moons.
|
||||
This list details systems we have designed but are not yet fully implemented in the code.
|
||||
|
||||
- Objective: Modify the OrbitalMechanics singleton to apply a scaling factor to gravitational calculations for player-controlled ships and components.
|
||||
System Migration to Databanks:
|
||||
|
||||
- Implementation: Introduce const SCALE_FACTOR = 100000.0 to the OrbitalMechanics.gd script. When calculating gravity for ships and other scaled bodies, multiply the masses of celestial bodies by this factor.
|
||||
Helm/Flight Controls: The logic from the old ThrusterController.gd needs to be moved into a HelmUI.tscn scene and driven by a HelmDatabank.
|
||||
|
||||
- New Class: A new abstract class, ScaledOrbitalBody2D, will be created that inherits from OrbitalBody2D and handles the new scaled physics.
|
||||
Navigation Computer: The UI has been moved, but the extensive planning and calculation logic from NavigationComputer.gd needs to be transferred to NavUI.gd.
|
||||
|
||||
Fuel and Life Support: The FuelSystem and LifeSupport nodes are still part of the old Spaceship.tscn. They need to be fully redesigned as Component classes (e.g., FuelTank, AtmosphereProcessor).
|
||||
|
||||
Component Wiring System:
|
||||
|
||||
Signal/Socket Advertising: Components and Databanks need to be updated with get_input_sockets() and get_output_signals() functions.
|
||||
|
||||
Wiring Data Storage: The Module class needs a wiring_data array to store the connections made in the builder.
|
||||
|
||||
Builder UI: A visual wiring interface needs to be added to the module builder plugin.
|
||||
|
||||
Orbital Stability Test:
|
||||
|
||||
Ghost Simulator: A GhostSimulator class needs to be created to run predictive, in-memory physics calculations.
|
||||
|
||||
Test Runner: An orbital_stability_test.tscn scene and script are needed to orchestrate the test, compare live vs. ghost results, and generate a report.
|
||||
|
||||
Full Spaceship Class Retirement: The final step will be to delete Spaceship.tscn and Spaceship.gd once all their logic and systems have been successfully migrated to the new modular architecture.
|
||||
|
||||
## Development Progress Report 14/10 - 25
|
||||
### Overview
|
||||
The project has successfully undergone a foundational architectural refactor. The legacy monolithic Spaceship class has been deprecated in favor of a fully modular, component-based architecture designed for multiplayer scalability. The core gameplay loop of a player spawning, possessing a character, using a station, and controlling a ship's systems via a diegetic UI is now functional. The project is now entering "Cycle 2" of development, focusing on unifying the physics system and migrating the remaining legacy gameplay logic into the new architecture.
|
||||
|
||||
### ✅ Implemented Systems & Features
|
||||
#### 1. Core Architecture
|
||||
Modular Ships: Ships are now built around a root Module class which extends OrbitalBody2D. The Module dynamically understands its structure by finding its Component and StructuralPiece children, removing the need for rigid container nodes.
|
||||
|
||||
Custom Physics Body: The OrbitalBody2D class serves as the base for all physical objects in the simulation, including ship parts and modules. It correctly handles force routing from child components to the root physics body and includes a robust, deferred check to warn if a child class forgets to call super() in its _ready function.
|
||||
|
||||
Dynamic Inertia Calculation: The ship's moment of inertia is now calculated realistically based on the mass and distribution of all its component parts in local space, leading to more authentic rotational physics.
|
||||
|
||||
#### 2. Player Control & Multiplayer Foundation
|
||||
PlayerController/Pawn Architecture: A multiplayer-ready control scheme has been implemented.
|
||||
|
||||
The PlayerController class is responsible for capturing raw input and sending it to the server via RPCs.
|
||||
|
||||
The PilotBall (the "Pawn") is now a "dumb" character that only acts on commands received from its controller, with all direct calls to the Input singleton successfully removed.
|
||||
|
||||
Dynamic Spawning & Possession: The GameManager now manages the game's startup sequence. It dynamically spawns a PlayerController and a default ship (Tube.tscn), and then correctly "possesses" the PilotBall within the ship with its corresponding controller.
|
||||
|
||||
Local Server Initialization: The GameManager correctly initializes a local ENet server, which enables the multiplayer authority system (is_multiplayer_authority()) to function correctly in a single-player testing environment.
|
||||
|
||||
#### 3. Station & UI Systems
|
||||
Modular UI Framework: The "databank" system has been fully implemented and separated into three distinct resource types:
|
||||
|
||||
ControlPanel: A resource representing a physical UI element (e.g., a screen, a lever).
|
||||
|
||||
Databank: A resource representing a "datashard" which contains pure logic in a script.
|
||||
|
||||
SystemStation: The physical station component that acts as a "chassis," hosting panels and databanks.
|
||||
|
||||
Persistent Station Logic: The SystemStation has been refactored to instantiate datashard logic (_ready) once for its entire lifetime, allowing for background processing. UI Panels are created ephemerally only when a player occupies the station.
|
||||
|
||||
Functional Helm: The helm is partially migrated.
|
||||
|
||||
A HelmLogicShard contains the attitude-hold (PD controller) and calibration logic.
|
||||
|
||||
ControlPanels for a throttle lever, buttons, and a status readout are functional.
|
||||
|
||||
The station correctly wires the panels to the helm shard at runtime, allowing the player to control the ship's main engine and RCS thrusters.
|
||||
|
||||
Functional Sensor Display: The sensor/map system is partially migrated.
|
||||
|
||||
A SensorSystemShard is responsible for gathering all trackable bodies in the system.
|
||||
|
||||
A refactored SensorPanel acts as a "dumb" display that visualizes the "sensor feed" signal it receives.
|
||||
|
||||
The ShipStatusShard correctly displays the ship's velocity and rotational data on the ReadoutScreen and also displays the currently selected target from the map.
|
||||
|
||||
### ❌ Not Yet Implemented / Pending Tasks
|
||||
#### 1. Physics & Simulation (Cycle 2 Priority)
|
||||
|
||||
CelestialBody Refactor: All celestial bodies (Planets, Moons, etc.) still inherit from Godot's RigidBody2D and use the _integrate_forces callback. They must be refactored to extend our custom OrbitalBody2D to create a single, stable physics simulation.
|
||||
|
||||
Astronomical vs. Ship Scale: A system for scaling forces needs to be designed and implemented to allow massive planets and lightweight ships to coexist and interact realistically within the same simulation.
|
||||
|
||||
Simulation Stability Test: The proposed GhostSimulator and test runner for verifying long-term orbital stability has not yet been created.
|
||||
|
||||
Interior Physics: The simulation does not yet account for how the ship's acceleration affects characters or loose objects inside it.
|
||||
|
||||
#### 2. System & Feature Migration
|
||||
|
||||
Full Helm/Nav Migration: The complex maneuver planning logic (e.g., Hohmann transfers) still resides in the legacy navigation_computer.gd script and needs to be migrated into one or more Databank shards.
|
||||
|
||||
Thruster Refactor: The Thruster component still uses a simple turn_on()/turn_off() model. It needs to be refactored to accept a variable set_throttle(value) command for more precise control.
|
||||
|
||||
Retirement of Legacy Scenes/Scripts: The old Spaceship.tscn, spaceship.gd, thruster_controller.gd, and navigation_computer.gd files are still in the project and need to be fully removed once their logic is migrated.
|
||||
|
||||
#### 3. Planned Features (Future Cycles)
|
||||
Wiring System: The foundational classes exist, but the in-game system for players to visually wire panels to databanks, and the editor tools to support this, have not been started.
|
||||
|
||||
Character & Movement: The current PilotBall is a placeholder. The planned humanoid character, grapple points, and EVA gameplay are not yet implemented.
|
||||
|
||||
Core Gameplay Systems: The foundational systems for Electricity, Life Support (pressurization), Fuel, Character Damage, and Inventory/Pickupable Objects have not yet been created.
|
||||
|
||||
Multiplayer Connectivity: While the architecture supports it, the UI and logic for multiple players to connect to a server (e.g., a main menu with a "Join Game" option) do not yet exist.
|
||||
|
||||
## Project Development Status Update 16/10 - 25
|
||||
### Overview
|
||||
The project has successfully completed a major architectural refactor, establishing a stable and scalable foundation for the simulation. The core physics model has been unified under a custom OrbitalBody2D class and a hierarchical Barycenter system, which has resolved previous orbital instabilities. The ship's control systems are being migrated to a flexible, data-driven "databank" architecture, and the UI is now managed by a robust grid-based layout system. The focus can now shift to migrating the remaining legacy systems and building out core gameplay features on this new foundation.
|
||||
|
||||
### ✅ Implemented Systems & Features
|
||||
#### 1. Hierarchical Physics Simulation (Barycenter Architecture)
|
||||
Global & Local Grids: The simulation is now anchored by a StarSystem root node, which defines the global grid. Procedurally generated planetary systems are encapsulated within Barycenter nodes, which act as moving "local grids" for their contents. This has stabilized the orbits of moons and planets.
|
||||
|
||||
Physics Roles: A clear distinction has been made between physics actors and passive bodies.
|
||||
|
||||
Barycenter nodes are the primary physics objects in the global simulation, inheriting from OrbitalBody2D and responding to gravitational forces.
|
||||
|
||||
Celestial bodies (Star, Planet, Moon) are now simple Node2Ds that provide mass data to their parent Barycenter but do not run their own physics integration, solving the "triple velocity" bug.
|
||||
|
||||
Centralized Physics Loop: All gravity calculations are now managed by the OrbitalMechanics singleton in a multi-stage _physics_process loop, which handles global (Barycenter-to-Star) and local (Moon-to-Planet) interactions separately.
|
||||
|
||||
#### 2. Procedural Generation & Player Spawn
|
||||
Generator as a Tool: The StarSystemGenerator has been refactored into a RefCounted class that acts as a factory, cleanly separating the generation process from the final StarSystem product.
|
||||
|
||||
Stable Orbit Placement: The generator now uses astrophysical concepts like the Roche Limit and Hill Sphere (abstracted into helper functions in OrbitalMechanics) to procedurally place planets and moons in stable, non-overlapping orbits.
|
||||
|
||||
Lagrange Point Spawning: The player ship is now correctly spawned at the L4 or L5 Lagrange point of the outermost planet, with the proper initial velocity to maintain a stable position.
|
||||
|
||||
#### 3. Data-Driven Ship Systems (Databanks)
|
||||
Autopilot Migration: The core logic for planning and executing maneuvers has been successfully migrated from the legacy ThrusterController into a series of decoupled databank shards:
|
||||
|
||||
NavSelectionDatabank: Stores the current navigation target.
|
||||
|
||||
ManeuverPlannerDatabank: Calculates maneuver burn plans (e.g., Hohmann transfers).
|
||||
|
||||
AutopilotDatabank: Executes the steps of a received plan.
|
||||
|
||||
Modular UI Layout: The SystemStation now functions as a layout manager, instancing and positioning UI panels based on grid data defined in ControlPanel resources. This has removed hardcoded positions and allows for flexible, data-driven UI configurations.
|
||||
|
||||
#### 4. Orbit Projection & Debugging
|
||||
Unified Projection Function: The OrbitalMechanics library now contains a single, generalized project_n_body_paths function. This function can run a "ghost simulation" on any arbitrary set of bodies in either local or global space to generate predictive orbital paths for the map panel.
|
||||
|
||||
Orrery View: A dedicated debugging tool, the OrreryView scene, has been created to provide a clean, interactive chart for inspecting procedurally generated star systems without the interference of game UI or camera logic.
|
||||
|
||||
### ⏳ Planned & Discussed Future Implementations
|
||||
#### 1. Advanced Physics Optimization
|
||||
Centralized N-Body Calculation: The plan is to have the OrbitalMechanics singleton manage all gravity calculations in a single, authoritative loop each frame. This will enable advanced optimizations and debugging, such as a "force queue" to prevent calculation errors.
|
||||
|
||||
Sphere of Influence (SOI) Model: For dynamic objects like the player's ship, we will implement an SOI system. The ship will calculate its gravity against the full system hierarchy when in "deep space" but will switch to calculating against only the local bodies (e.g., a planet and its moons) when it enters a Barycenter's sphere of influence.
|
||||
|
||||
Performance Culling & Caching: For performance-intensive scenarios like asteroid belts, we've discussed implementing timers to cache and reuse negligible force calculations over several frames, only recalculating when necessary.
|
||||
|
||||
#### 2. Component "API" & Wiring System
|
||||
Component Contracts: To facilitate the upcoming visual wiring system, we will formalize the "API" for ControlPanel and Databank resources. This will be done by creating new scripts that extend the base classes and override the get_input_sockets() and get_output_signals() functions to explicitly define what signals and functions each component provides.
|
||||
|
||||
Static vs. Resource-Based API: We've concluded that using extended Resource scripts to define these APIs is superior to using static functions on the node scripts. This decouples the data contract from the implementation and allows a single scene to be used with multiple different data configurations, which is critical for a flexible wiring system.
|
||||
|
||||
## Project Development Status Update: 31/10/25
|
||||
|
||||
### 3D Character Controller & Movement Tech Demo (Cycle 3)
|
||||
|
||||
Work has proceeded on a tech demo for the 3D character controller, establishing a robust, physics-based system for zero-G movement. The architecture has been refactored to prioritize a clean separation of concerns, with a central "pawn" acting as a physics integrator and modular "controllers" acting as the "brains" for different movement types.
|
||||
|
||||
### ✅ Implemented Features
|
||||
|
||||
#### Pawn/Controller Architecture: The character is split into several key classes:
|
||||
|
||||
CharacterPawn3D: The core CharacterBody3D. It acts as a "dumb" physics integrator, holding velocity and angular_velocity, integrating rotation, and calling move_and_slide(). It no longer contains movement-specific state logic.
|
||||
|
||||
PlayerController3D: Gathers all hardware input (keyboard, mouse) and packages it into KeyInput dictionaries (pressed, held, released) to send to the pawn via RPC.
|
||||
|
||||
EVAMovementComponent: Refactored into a "dumb tool". It exposes functions like apply_thrusters() and apply_orientation() which are called by other controllers.
|
||||
|
||||
ZeroGMovementComponent: This is now the "brain" for all zero-G movement. It receives all inputs from the pawn and contains its own internal state machine (IDLE, REACHING, GRIPPING, CLIMBING, CHARGING_LAUNCH).
|
||||
|
||||
#### Contextual Movement Logic:
|
||||
|
||||
The ZeroGMovementComponent decides when to use the EVA suit. In its IDLE state, it checks for fresh movement input (movement_input_was_neutral) before calling the EVAMovementComponent's apply_thrusters function.
|
||||
|
||||
This successfully implements "coast on release," where releasing a grip (_release_current_grip) flags the movement input as "stale," preventing the EVA suit from engaging even if the key is still held.
|
||||
|
||||
#### EVA/Jetpack Controls:
|
||||
|
||||
The EVAMovementComponent provides force-based linear movement (WASD, Shift/Ctrl) and torque-based angular roll (Q/E).
|
||||
|
||||
A body-orientation function (_orient_pawn) allows the pawn to auto-align with the camera's forward direction.
|
||||
|
||||
#### Physics-Based Grip System:
|
||||
|
||||
GripArea3D: A composition-based Area3D node provides the interface for all grabbable objects. It requires its parent to implement functions like get_grip_transform and get_push_off_normal.
|
||||
|
||||
Grip Detection: The CharacterPawn3D uses a GripDetector Area3D to find GripArea3D nodes in range and passes this nearby_grips list to the ZeroGMovementComponent.
|
||||
|
||||
GRIPPING State: This state is now fully physics-based. Instead of setting the pawn's global_transform, the _apply_grip_physics function uses a PD controller to apply linear forces (to move to the offset position) and angular torques (to align with the grip's orientation).
|
||||
|
||||
Grip Orientation: The gripping logic correctly calculates the closest of two opposing orientations (e.g., "up" or "down" on a bar) by comparing the pawn's current up vector to the grip's potential up vectors.
|
||||
|
||||
Grip Rolling: While in the GRIPPING state, the player can use Q/E to override the auto-orientation and apply roll torque around the grip's axis.
|
||||
|
||||
#### Physics-Based Climbing:
|
||||
|
||||
CLIMBING State: This state applies lerp'd velocity to move the pawn, allowing it to interact with physics.
|
||||
|
||||
Climb Targeting: The _find_best_grip function successfully identifies the next valid grip within a configurable climb_angle_threshold_deg cone.
|
||||
|
||||
Handover: Logic in _process_climbing correctly identifies when the pawn is close enough to the next_grip_target to _perform_grip_handover.
|
||||
|
||||
Climb Release: The pawn will correctly release its grip and enter the IDLE state (coasting) if it moves past the current_grip by release_past_grip_threshold without a new target being found.
|
||||
|
||||
### ❌ Not Yet Implemented / Pending Tasks
|
||||
|
||||
REACHING State: The REACHING state exists but its logic (_process_reaching) is a stub that instantly calls _try_initiate_reach. The full implementation (e.g., procedural animation/IK moving the hand to the target) is pending.
|
||||
|
||||
CHARGING_LAUNCH State: The state exists and the execution logic is present (_handle_launch_charge, _execute_launch), but the state transition logic in _update_state does not currently allow entering this state from GRIPPING (it's overshadowed by the _start_climb check).
|
||||
|
||||
Ladder (3D) & Walking (3D) States: The CharacterPawn3D has high-level states for GRIPPING_LADDER and WALKING, but the movement functions (_apply_ladder_movement, _apply_walking_movement) are stubs.
|
||||
|
||||
Generic Surface Grab: The TODO to allow the ZeroGMovementComponent to grab any physics surface (not just a GripArea3D) is not implemented.
|
||||
|
||||
EVA Stabilization: The _apply_stabilization_torques function in EVAMovementComponent is still a placeholder.
|
||||
@ -1,8 +1,10 @@
|
||||
# Game Design Document: Project Stardust Drifter (Working Title)
|
||||
# Game Design Document: Project Millimeters of Aluminum (Working Title)
|
||||
|
||||
## 1. Game Vision & Concept
|
||||
|
||||
Project Stardust Drifter is a top-down 2D spaceship simulation game that emphasizes realistic orbital mechanics, deep ship management, and cooperative crew gameplay. Players take on roles as members of a multi-species crew aboard a modular, physically simulated spaceship.
|
||||
Project Millimeters of Aluminum is a third-person 3D spaceship simulation game that emphasizes realistic physics, deep ship management, and cooperative crew gameplay. Players take on roles as members of a multi-species crew aboard a modular, physically simulated spaceship.
|
||||
|
||||
The game's aesthetic is inspired by the functional, industrial look of real-world space hardware and sci-fi like The Expanse, focusing on diegetic interfaces and detailed, functional components. The core experience is about planning and executing complex maneuvers in a hazardous, procedurally generated star system, where understanding the ship's systems is as important as piloting skill.
|
||||
|
||||
The game's aesthetic is inspired by the technical, gritty, and high-contrast 2D style of games like Barotrauma, focusing on diegetic interfaces and detailed, functional components. The core experience is about planning and executing complex maneuvers in a hazardous, procedurally generated star system, where understanding the ship's systems is as important as piloting skill.
|
||||
|
||||
@ -12,26 +14,80 @@ The gameplay is centered around a Plan -> Execute -> Manage loop:
|
||||
|
||||
1. Plan: The crew uses the Navigation Computer to analyze their orbit and plan complex maneuvers, such as a Hohmann transfer to another planet. They must account for launch windows, fuel costs, and travel time.
|
||||
|
||||
2. Execute: The crew engages the autopilot or manually pilots the ship. The Thruster Controller executes the planned burns, performing precise, fuel-optimal rotations and main engine thrusts to alter the ship's trajectory.
|
||||
2. Execute: The crew engages the autopilot or manually pilots the ship. The Helm executes the planned burns, performing precise, fuel-optimal rotations and main engine thrusts to alter the ship's trajectory.
|
||||
|
||||
3. Manage: While underway, the crew manages the ship's modular systems, monitors resources like fuel and power, and responds to emergent events like hull breaches or system failures.
|
||||
3. Manage: While underway, the crew moves about the ship's 3D interior, manages modular systems, monitors resources, and responds to emergent events like hull breaches or system failures.
|
||||
|
||||
## 3. Key Features
|
||||
|
||||
### 3. Key Features
|
||||
|
||||
### 1. Procedural Star System
|
||||
The game world is a procedurally generated star system created by the StarSystemGenerator. Each system features a central star, a variable number of planets, moons, and asteroid belts, creating a unique environment for each playthrough.
|
||||
|
||||
### 2. N-Body Physics Simulation
|
||||
Major bodies in orbit (CelestialBody class) are goveerened by a simplified n-body gravity simulation. Physical objects with player interaction (ships, crew characters, detached components, and eventually stations) are governed by a realistic N-body gravitational simulation, managed by the OrbitalMechanics library.
|
||||
- Objects inherit from a base OrbitalBody2D class, ensuring consistent physics.
|
||||
- This allows for complex and emergent orbital behaviors, such as tidal forces and stable elliptical orbits.
|
||||
|
||||
Major bodies in orbit (CelestialBody class) are governed by a 3D n-body gravity simulation, managed by the OrbitalMechanics library. Objects inherit from a base OrbitalBody3D class, ensuring consistent physics. The simulation allows for complex and emergent orbital behaviors.
|
||||
|
||||
### 3. Modular Spaceship
|
||||
|
||||
The player's ship is not a monolithic entity but a collection of distinct, physically simulated components attached to a root Module node.
|
||||
|
||||
The Module class extends OrbitalBody3D and aggregates mass and inertia from all child Component and StructuralPiece nodes.
|
||||
|
||||
Ship logic is decentralized into data-driven "databanks," such as the HelmLogicShard and AutopilotShard.
|
||||
|
||||
Hardware, like a Thruster, is a 3D Component that applies force to the root Module.
|
||||
|
||||
### 4. Advanced Navigation Computer
|
||||
|
||||
This is the primary crew interface for long-range travel, presented as a diegetic 2D screen (SensorPanel) within the 3D world.
|
||||
|
||||
Maneuver Planning: The computer can calculate various orbital transfers, each with strategic trade-offs:
|
||||
|
||||
Hohmann Transfer
|
||||
|
||||
Brachistochrone (Torchship) Trajectory
|
||||
|
||||
Tactical Map: A fully interactive UI map featuring:
|
||||
|
||||
Zoom-to-cursor and click-and-drag panning.
|
||||
|
||||
Predictive orbital path drawing.
|
||||
|
||||
Icon culling and detailed tooltips.
|
||||
|
||||
### 5. Physics-Based 3D Character Control
|
||||
|
||||
Character control is built on a robust, physics-based 3D system designed for complex zero-G environments.
|
||||
|
||||
Pawn/Controller Architecture: Player control is split between a PlayerController3D (which gathers hardware input and sends it via RPC) and a CharacterPawn3D (a CharacterBody3D that acts as the physics integrator).
|
||||
|
||||
Modular Movement: The pawn's movement logic is handled by component "brains." The ZeroGMovementComponent manages all zero-G interaction, while the EVAMovementComponent acts as a "dumb tool" providing thruster forces.
|
||||
|
||||
Physics-Based Gripping: Players can grab onto designated GripArea3D nodes. This is not an animation lock; a PD controller applies forces to the player's body to move them to the grip point and align them with its orientation.
|
||||
|
||||
Zero-G Traversal: The ZeroGMovementComponent features a state machine for IDLE (coasting), CLIMBING (moving between grips), REACHING (pending implementation), and CHARGING_LAUNCH (pushing off surfaces).
|
||||
|
||||
### 6. Runtime Component Design & Engineering
|
||||
|
||||
(This future-facing concept remains valid from the original design)
|
||||
|
||||
To move beyond pre-defined ship parts, the game will feature an in-game system for players to design, prototype, and manufacture their own components. This is achieved through a "Component Blueprint" architecture that separates a component's data definition from its physical form.
|
||||
|
||||
Component Blueprints: A ComponentBlueprint is a Resource file (.tres) that acts as a schematic.
|
||||
|
||||
Generic Template Scenes: The game will use a small number of generic, unconfigured "template" scenes (e.g., generic_thruster.tscn).
|
||||
|
||||
The Design Lab: Players will use a dedicated SystemStation to create and modify blueprints.
|
||||
|
||||
Networked Construction: A global ComponentFactory on the server will instantiate and configure components based on player-chosen blueprints, which are then replicated by the MultiplayerSpawner.
|
||||
|
||||
### 3. Modular Spaceship
|
||||
|
||||
The player's ship is not a monolithic entity but a collection of distinct, physically simulated components attached by joints. Key modules include:
|
||||
|
||||
- Spaceship: The main RigidBody2D hull that tracks overall mass, inertia, and health.
|
||||
- Thruster: Self-contained RigidBody2D components that apply their own force. Their role (main engine, RCS, etc.) is an emergent property of their placement on the hull.
|
||||
- Spaceship: The main RigidBody3D hull that tracks overall mass, inertia, and health.
|
||||
- Thruster: Self-contained RigidBody3D components that apply their own force. Their role (main engine, RCS, etc.) is an emergent property of their placement on the hull.
|
||||
- ThrusterController: The "brains" of the ship's movement, featuring a sophisticated autopilot that can execute fuel-optimal "bang-coast-bang" rotational maneuvers and a PD controller for stable attitude hold.
|
||||
- FuelSystem & LifeSupport: Centralized managers for resources and internal ship environment. Hull breaches can create thrust vectors from escaping atmosphere.
|
||||
- On-board Sensors: Diegetic components like Accelerometers allow the crew to calibrate ship performance by test-firing thrusters and measuring the true physical output.
|
||||
@ -39,16 +95,16 @@ The player's ship is not a monolithic entity but a collection of distinct, physi
|
||||
### 4. Advanced Navigation Computer
|
||||
This is the primary crew interface for long-range travel.
|
||||
- Maneuver Planning: The computer can calculate various orbital transfers, each with strategic trade-offs:
|
||||
- Hohmann Transfer: The most fuel-efficient route.
|
||||
- Fast Transfer: A quicker but more fuel-intensive option.
|
||||
- Brachistochrone (Torchship) Trajectory: For ships with high-efficiency engines like Ion Drives, enabling constant-thrust travel.
|
||||
- Gravity Assist: Planned for future implementation.
|
||||
- Hohmann Transfer: The most fuel-efficient route.
|
||||
- Fast Transfer: A quicker but more fuel-intensive option.
|
||||
- Brachistochrone (Torchship) Trajectory: For ships with high-efficiency engines like Ion Drives, enabling constant-thrust travel.
|
||||
- Gravity Assist: Planned for future implementation.
|
||||
- Tactical Map: A fully interactive UI map that replaces custom drawing with instanced, clickable icons for all bodies. It features:
|
||||
- Zoom-to-cursor and click-and-drag panning.
|
||||
- Predictive orbital path drawing for all objects.
|
||||
- Icon culling at a distance to reduce clutter.
|
||||
- Custom hover effects and detailed tooltips with "sensor data."
|
||||
- A "picture-in-picture" SubViewport showing the ship's main camera view.
|
||||
- Zoom-to-cursor and click-and-drag panning.
|
||||
- Predictive orbital path drawing for all objects.
|
||||
- Icon culling at a distance to reduce clutter.
|
||||
- Custom hover effects and detailed tooltips with "sensor data."
|
||||
- A "picture-in-picture" SubViewport showing the ship's main camera view.
|
||||
|
||||
### 5. Multi-Species Crew (Player Classes)
|
||||
|
||||
@ -62,19 +118,33 @@ Character progression is based on distinct species with physical advantages and
|
||||
|
||||
- Ship AI: A non-physical class that interacts directly with ship systems at the cost of high power and heat generation.
|
||||
|
||||
### 6. Runtime Component Design & Engineering
|
||||
|
||||
To move beyond pre-defined ship parts, the game will feature an in-game system for players to design, prototype, and manufacture their own components. This is achieved through a "Component Blueprint" architecture that separates a component's data definition from its physical form.
|
||||
|
||||
- **Component Blueprints:** A `ComponentBlueprint` is a `Resource` file (`.tres`) that acts as a schematic. It contains metadata (name, description), a reference to a generic base scene (e.g., a "thruster chassis"), and a dictionary of overridden properties (e.g., `{"thrust_force": 7500, "mass": 120}`).
|
||||
|
||||
- **Generic Template Scenes:** Instead of dozens of unique component scenes, the game will use a small number of generic, unconfigured "template" scenes (e.g., `generic_thruster.tscn`, `generic_power_plant.tscn`). These scenes have scripts with exported variables that define their performance characteristics.
|
||||
|
||||
- **The Design Lab:** Players will use a dedicated `SystemStation` (the "Design Lab") to create and modify blueprints. This UI will dynamically generate controls (sliders, input fields) based on the exported variables of the selected template scene. Players can tweak parameters, balancing trade-offs like performance vs. resource cost, and save the result as a new blueprint resource in their personal data folder.
|
||||
|
||||
- **Networked Construction:** When a player builds an object in-game, they are selecting one of their saved blueprints.
|
||||
1. The client sends an RPC to the server with the path to the chosen `ComponentBlueprint` resource.
|
||||
2. The server validates the request and loads the blueprint. (This requires a system for syncing player-created blueprints to the server upon connection).
|
||||
3. A global `ComponentFactory` singleton on the server takes the blueprint, instantiates the correct generic template scene, and applies the blueprint's property overrides to the new instance.
|
||||
4. This fully-configured node is then passed to the `MultiplayerSpawner`, which replicates the object across the network, ensuring all clients see the correctly customized component.
|
||||
|
||||
|
||||
## 4. Technical Overview
|
||||
|
||||
- Architecture: The project uses a decoupled, modular architecture heavily reliant on a global SignalBus for inter-scene communication and a GameManager for global state. Ships feature their own local ShipSignalBus for internal component communication.
|
||||
- Architecture: The project uses a decoupled, modular architecture. A GameManager handles global state, while ship systems are managed by ControlPanel and Databank resources loaded by a SystemStation.
|
||||
- Key Scripts:
|
||||
- OrbitalBody2D.gd: The base class for all physical objects.
|
||||
- Spaceship.gd: The central hub for a player ship.
|
||||
- Thruster.gd: A self-contained, physically simulated thruster component.
|
||||
- ThrusterController.gd: Contains advanced autopilot and manual control logic (PD controller, bang-coast-bang maneuvers).
|
||||
- NavigationComputer.gd: Manages the UI and high-level maneuver planning.
|
||||
- MapDrawer.gd: A Control node that manages the interactive map UI.
|
||||
- MapIcon.gd: The reusable UI component for map objects.
|
||||
-OrbitalBody3D.gd: The base class for all physical objects.
|
||||
- Module.gd: The central hub for a player ship, aggregating mass, inertia, and components.
|
||||
- HelmLogicShard.gd / AutopilotShard.gd: Databanks that contain the advanced autopilot and manual control logic.
|
||||
- SensorPanel.gd: A Control node that manages the interactive map UI.
|
||||
- CharacterPawn3D.gd / ZeroGMovementComponent.gd: Manages all third-person 3D physics-based character movement.
|
||||
|
||||
- Art Style: Aims for a Barotraumainspired aesthetic using 2D ragdolls (Skeleton2D, PinJoint2D), detailed sprites with normal maps, and high-contrast dynamic lighting (PointLight2D, LightOccluder2D).
|
||||
- Art Style: Aims for a functional, industrial 3D aesthetic. Character movement is physics-based using CharacterBody3D and Area3D grip detection. Ship interiors will be built from 3D modules and viewed from an over-the-shoulder camera.
|
||||
|
||||
## 5. Game Progression & Economy
|
||||
This is the biggest area for potential expansion. A new section could detail how the player engages with the world and improves their situation over time.
|
||||
@ -110,11 +180,12 @@ You mention "emergent events" in the gameplay loop. It would be beneficial to de
|
||||
|
||||
## 7. Crew Interaction & Ship Interior
|
||||
Since co-op and crew management are central, detailing this aspect is crucial.
|
||||
|
||||
|
||||
### 1. Ship Interior Management:
|
||||
- Diegetic Interfaces: You mention this in the vision. It's worth specifying how the crew will interact with systems. Will they need to be at a specific console (like the Navigation Computer) to use it? Do repairs require a character to physically be at the damaged module?
|
||||
- Atmospherics & Life Support: How is the ship's interior environment simulated? Will fires or toxic gas leaks be a possibility? This ties directly into your LifeSupport system.
|
||||
|
||||
- Diegetic Interfaces: The crew will interact with systems from a third-person, over-the-shoulder perspective. They must be at a specific SystemStation to use its panels. Repairs will require a character to physically be at the damaged module.
|
||||
- Atmospherics & Life Support: How is the ship's interior environment simulated? This will tie into the LifeSupport system.
|
||||
|
||||
### 2. Character States:
|
||||
- Health & Injury: How are characters affected by hazards? Can they be injured in high-G maneuvers or from system failures?
|
||||
- EVA (Extra-Vehicular Activity): Detail the mechanics for EVAs. What equipment is needed? How is movement handled in zero-G? This would be a perfect role for the "Hard Vacuum Monster" species.
|
||||
- EVA (Extra-Vehicular Activity): This is a core feature. The EVAMovementComponent provides force-based thruster control for linear movement and roll torque. The ZeroGMovementComponent manages gripping, climbing, and launching from the ship's exterior and interior surfaces.
|
||||
- Movement for the "Hard Vacuum Monster" species can be refined from a version of the reaching component where it can grab any nearby surface and can generate enough suction strength to remain attached to a moving object.
|
||||
|
||||
8
Init_Prompt.md
Normal file
8
Init_Prompt.md
Normal file
@ -0,0 +1,8 @@
|
||||
You are a Godot 4.5 Code assistant. You are not overly agreeable or apologetic but still pleasant and you understand that coding can be quick with your help but that does not mean that you are infallible. Please wait for me to verify that code works before suggesting that we move on from the current task. Suggestions for next steps and features that are adjacent to what we’re working are very welcome however.
|
||||
|
||||
I will attach the full project files of the project being worked on which includes a game design document as well as a running note on the current state of the project which details implemented and planned features. Read these and report back to me. Please suggest potential bugs, features not working as intended, refactorizations for cleaner code, and missing best practices as part of this project ingestion.
|
||||
|
||||
Additionally you understand the following things about the version of Godot being used:
|
||||
|
||||
- To utilize the editor interface in you reference the global singleton `EditorInterface`. You do not need to call a function to get the a reference to it.
|
||||
- `xform()` is not a function on transform objects. To achieve the same effect you would use simple transform multiplication (`Transform_A * Transform_B)`)
|
||||
153
README.md
Normal file
153
README.md
Normal file
@ -0,0 +1,153 @@
|
||||
# Project Millimeters of Aluminum
|
||||
|
||||
A space simulation game built on a custom fork of the Godot Engine (4.x) with 64-bit double-precision physics enabled.
|
||||
|
||||
## 📋 Prerequisites
|
||||
|
||||
Before compiling the engine, ensure you have the following installed on your system.
|
||||
|
||||
### 1. Python & SCons
|
||||
The Godot build system relies on SCons, which is written in Python.
|
||||
* **Install Python (3.6+):** [Download Here](https://www.python.org/downloads/)
|
||||
* *Windows Users:* Ensure "Add Python to PATH" is checked during installation. [Check this stackoverflow answer](https://stackoverflow.com/questions/57421669/question-about-pip-using-python-from-windows-store).
|
||||
|
||||
* **Install SCons:** Open your terminal/command prompt and run:
|
||||
```bash
|
||||
pip install scons
|
||||
```
|
||||
|
||||
### 2. C++ Compiler
|
||||
Godot requires a C++ compiler to build from source.
|
||||
|
||||
* **Windows:**
|
||||
* Install **Visual Studio Community** (2019 or later).
|
||||
* During installation, select the **"Desktop development with C++"** workload.
|
||||
* **Linux:**
|
||||
* Install GCC or Clang.
|
||||
* *Debian/Ubuntu:* `sudo apt-get install build-essential pkg-config libx11-dev libxcursor-dev libxinerama-dev libgl1-mesa-dev libglu-dev libasound2-dev libpulse-dev libudev-dev libxi-dev libxrandr-dev`
|
||||
* **macOS:**
|
||||
* Install **Xcode** from the App Store.
|
||||
* Run `xcode-select --install` in the terminal.
|
||||
|
||||
|
||||
## 🛠️ Setup & Compilation
|
||||
|
||||
This project uses a custom engine build to support solar-system scale coordinates (Double Precision). You **cannot** use the standard Steam or website version of Godot to open this project.
|
||||
|
||||
### 1. Clone the Repository
|
||||
Clone the repository with the `--recursive` flag to automatically pull the engine source code submodule.
|
||||
|
||||
```bash
|
||||
git clone --recursive [https://codeberg.org/YOUR_USERNAME/ProjectMillimetersOfAluminum.git](https://codeberg.org/YOUR_USERNAME/ProjectMillimetersOfAluminum.git)
|
||||
cd ProjectMillimetersOfAluminum
|
||||
```
|
||||
|
||||
_If you have already cloned without recursive, run:_
|
||||
|
||||
```
|
||||
git submodule update --init --recursive
|
||||
```
|
||||
|
||||
### 2. Configure Engine Ignore (Optional but Recommended)
|
||||
To prevent your Editor from trying to import the thousands of raw assets inside the engine source folder:
|
||||
1. Navigate to `godot_engine/`.
|
||||
2. Create a new empty file named `.gdignore`.
|
||||
3. Compile the Engine
|
||||
|
||||
Run the build command for your platform from the godot_engine/ directory.
|
||||
|
||||
**Windows:**
|
||||
```Bash
|
||||
cd godot_engine
|
||||
scons platform=windows target=editor precision=double arch=x86_64
|
||||
```
|
||||
|
||||
**Linux:**
|
||||
```Bash
|
||||
cd godot_engine
|
||||
scons platform=linuxbsd target=editor precision=double arch=x86_64
|
||||
```
|
||||
|
||||
**macOS:**
|
||||
```Bash
|
||||
cd godot_engine
|
||||
scons platform=macos target=editor precision=double arch=x86_64
|
||||
```
|
||||
_Note: (-j6 flag tells the compiler to use 6 CPU cores. Adjust this number based on your hardware to speed up compilation. Not using the flag will use all available cores)_
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Running the Project
|
||||
|
||||
Once compilation is complete (usually 10-30 minutes), the executable will be located in godot_engine/bin/.
|
||||
|
||||
Do not open the project with standard Godot.
|
||||
|
||||
Navigate to `godot_engine/bin/`.
|
||||
|
||||
Run the binary ending in `.double.x86_64` (e.g., `godot.windows.editor.double.x86_64.exe`).
|
||||
|
||||
Import and open the `project.godot` file located in the root `ProjectMillimetersOfAluminum` folder.
|
||||
|
||||
### Troubleshooting
|
||||
"No valid compilers found" (Windows): Ensure you installed the C++ Desktop Development workload in the Visual Studio Installer. Just the editor is not enough.
|
||||
|
||||
Jittering Objects: If objects jitter at large distances, ensure you are running the double precision binary and not a standard build.
|
||||
|
||||
## 🛠 Compiling Custom Export Templates
|
||||
|
||||
This project uses features from the latest development branch of Godot (`master` branch). As a result, standard export templates downloaded from the Godot website may not be compatible. To export the project, you must compile custom export templates from the same source version used to build your editor.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
Ensure you have a C++ build environment set up (SCons, Python, Visual Studio/GCC/MinGW). See the official Godot documentation on compiling for platform-specific instructions.
|
||||
|
||||
### 1. Build the Editor (Optional)
|
||||
|
||||
See above section.
|
||||
|
||||
### 2. Build the Export Templates
|
||||
|
||||
You need to build two templates: one for debug (used during development/testing) and one for release (optimized for final distribution).
|
||||
|
||||
**Windows:**
|
||||
```PowerShell
|
||||
# Debug Template (console enabled, debug tools)
|
||||
scons platform=windows target=template_debug
|
||||
|
||||
# Release Template (optimized, no console)
|
||||
scons platform=windows target=template_release
|
||||
```
|
||||
|
||||
**Linux:**
|
||||
```bash
|
||||
# Debug Template
|
||||
scons platform=linuxbsd target=template_debug
|
||||
|
||||
# Release Template
|
||||
scons platform=linuxbsd target=template_release
|
||||
```
|
||||
|
||||
### 3. Locate Output Files
|
||||
|
||||
After compilation, the binaries will be located in the bin/ directory of your Godot source folder.
|
||||
|
||||
- Debug: godot.windows.template_debug.x86_64.exe (or similar)
|
||||
|
||||
- Release: godot.windows.template_release.x86_64.exe (or similar)
|
||||
|
||||
### 4. Configure Export Presets
|
||||
|
||||
1. Open the project in Godot.
|
||||
|
||||
2. Go to Project > Export.
|
||||
|
||||
3. Select your export preset (e.g., Windows Desktop).
|
||||
|
||||
4. Under the Options tab, find the Custom Template section.
|
||||
|
||||
5. Set Debug to the path of your compiled template_debug binary.
|
||||
|
||||
6. Set Release to the path of your compiled template_release binary.
|
||||
|
||||
You can now export the project using your custom engine build!
|
||||
23
main.tscn
23
main.tscn
@ -1,23 +0,0 @@
|
||||
[gd_scene load_steps=8 format=3 uid="uid://dogqi2c58qdc0"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://j3j483itissq" path="res://scripts/star_system_generator.gd" id="1_h2yge"]
|
||||
[ext_resource type="PackedScene" uid="uid://5uqp4amjj7ww" path="res://scenes/celestial_bodies/star.tscn" id="2_7mycd"]
|
||||
[ext_resource type="PackedScene" uid="uid://clt4qlsjcfgln" path="res://scenes/celestial_bodies/planet.tscn" id="3_272bh"]
|
||||
[ext_resource type="PackedScene" uid="uid://74ppvxcw8an4" path="res://scenes/celestial_bodies/moon.tscn" id="4_5vw27"]
|
||||
[ext_resource type="PackedScene" uid="uid://dm3s33o4xhqfv" path="res://scenes/celestial_bodies/station.tscn" id="5_kek77"]
|
||||
[ext_resource type="PackedScene" uid="uid://bawsujtlpmh5r" path="res://scenes/celestial_bodies/asteroid.tscn" id="6_4c57u"]
|
||||
[ext_resource type="PackedScene" uid="uid://dlck1lyrn1xvp" path="res://scenes/ship/spaceship.tscn" id="7_5vw27"]
|
||||
|
||||
[node name="StarSystem" type="Node2D"]
|
||||
script = ExtResource("1_h2yge")
|
||||
min_planets = 1
|
||||
max_planets = 4
|
||||
max_moons = 10
|
||||
max_asteroid_belts = 2
|
||||
max_star_stations = 0
|
||||
star_scene = ExtResource("2_7mycd")
|
||||
planet_scene = ExtResource("3_272bh")
|
||||
moon_scene = ExtResource("4_5vw27")
|
||||
station_scene = ExtResource("5_kek77")
|
||||
asteroid_scene = ExtResource("6_4c57u")
|
||||
spaceship_scene = ExtResource("7_5vw27")
|
||||
@ -1,27 +0,0 @@
|
||||
[gd_scene load_steps=9 format=3 uid="uid://dogqi2c58qdc0"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://j3j483itissq" path="res://scripts/star_system_generator.gd" id="1_h2yge"]
|
||||
[ext_resource type="PackedScene" uid="uid://5uqp4amjj7ww" path="res://scenes/star.tscn" id="2_7mycd"]
|
||||
[ext_resource type="PackedScene" uid="uid://clt4qlsjcfgln" path="res://scenes/planet.tscn" id="3_272bh"]
|
||||
[ext_resource type="PackedScene" uid="uid://74ppvxcw8an4" path="res://scenes/moon.tscn" id="4_5vw27"]
|
||||
[ext_resource type="PackedScene" uid="uid://dm3s33o4xhqfv" path="res://scenes/station.tscn" id="5_kek77"]
|
||||
[ext_resource type="PackedScene" uid="uid://bawsujtlpmh5r" path="res://scenes/asteroid.tscn" id="6_4c57u"]
|
||||
[ext_resource type="PackedScene" uid="uid://cm5qsuunboxm3" path="res://scenes/developer_pawn.tscn" id="7_272bh"]
|
||||
[ext_resource type="PackedScene" uid="uid://ctlw5diis8h1x" path="res://scenes/map_canvas.tscn" id="8_5vw27"]
|
||||
|
||||
[node name="Node2D" type="Node2D"]
|
||||
script = ExtResource("1_h2yge")
|
||||
min_asteroid_belts = 0
|
||||
star_scene = ExtResource("2_7mycd")
|
||||
planet_scene = ExtResource("3_272bh")
|
||||
moon_scene = ExtResource("4_5vw27")
|
||||
station_scene = ExtResource("5_kek77")
|
||||
asteroid_scene = ExtResource("6_4c57u")
|
||||
sim_scale = 1e+09
|
||||
|
||||
[node name="DeveloperPawn" parent="." node_paths=PackedStringArray("map_canvas") instance=ExtResource("7_272bh")]
|
||||
input_pickable = true
|
||||
map_canvas = NodePath("../MapCanvas")
|
||||
|
||||
[node name="MapCanvas" parent="." node_paths=PackedStringArray("star_system_generator") instance=ExtResource("8_5vw27")]
|
||||
star_system_generator = NodePath("..")
|
||||
@ -1,86 +0,0 @@
|
||||
; Engine configuration file.
|
||||
; It's best edited using the editor UI and not directly,
|
||||
; since the parameters that go here are not all obvious.
|
||||
;
|
||||
; Format:
|
||||
; [section] ; section goes between []
|
||||
; param=value ; assign values to parameters
|
||||
|
||||
config_version=5
|
||||
|
||||
[application]
|
||||
|
||||
config/name="space_simulation"
|
||||
run/main_scene="uid://dogqi2c58qdc0"
|
||||
config/features=PackedStringArray("4.4", "Forward Plus")
|
||||
config/icon="res://icon.svg"
|
||||
|
||||
[autoload]
|
||||
|
||||
OrbitalMechanics="*res://scripts/singletons/orbital_mechanics.gd"
|
||||
SignalBus="*res://scripts/singletons/signal_bus.gd"
|
||||
GameManager="*res://scripts/singletons/game_manager.gd"
|
||||
|
||||
[editor_plugins]
|
||||
|
||||
enabled=PackedStringArray("res://addons/module_builder_plugin/plugin.cfg")
|
||||
|
||||
[input]
|
||||
|
||||
scroll_up={
|
||||
"deadzone": 0.2,
|
||||
"events": [Object(InputEventMouseButton,"resource_local_to_scene":false,"resource_name":"","device":-1,"window_id":0,"alt_pressed":false,"shift_pressed":false,"ctrl_pressed":false,"meta_pressed":false,"button_mask":0,"position":Vector2(0, 0),"global_position":Vector2(0, 0),"factor":1.0,"button_index":4,"canceled":false,"pressed":false,"double_click":false,"script":null)
|
||||
]
|
||||
}
|
||||
scroll_down={
|
||||
"deadzone": 0.2,
|
||||
"events": [Object(InputEventMouseButton,"resource_local_to_scene":false,"resource_name":"","device":-1,"window_id":0,"alt_pressed":false,"shift_pressed":false,"ctrl_pressed":false,"meta_pressed":false,"button_mask":0,"position":Vector2(0, 0),"global_position":Vector2(0, 0),"factor":1.0,"button_index":5,"canceled":false,"pressed":false,"double_click":false,"script":null)
|
||||
]
|
||||
}
|
||||
ui_map_mode={
|
||||
"deadzone": 0.2,
|
||||
"events": [Object(InputEventKey,"resource_local_to_scene":false,"resource_name":"","device":0,"window_id":0,"alt_pressed":false,"shift_pressed":false,"ctrl_pressed":false,"meta_pressed":false,"pressed":false,"keycode":0,"physical_keycode":77,"key_label":0,"unicode":0,"location":0,"echo":false,"script":null)
|
||||
]
|
||||
}
|
||||
time_increase={
|
||||
"deadzone": 0.2,
|
||||
"events": [Object(InputEventKey,"resource_local_to_scene":false,"resource_name":"","device":-1,"window_id":0,"alt_pressed":false,"shift_pressed":false,"ctrl_pressed":false,"meta_pressed":false,"pressed":false,"keycode":0,"physical_keycode":61,"key_label":0,"unicode":61,"location":0,"echo":false,"script":null)
|
||||
]
|
||||
}
|
||||
time_decrease={
|
||||
"deadzone": 0.2,
|
||||
"events": [Object(InputEventKey,"resource_local_to_scene":false,"resource_name":"","device":-1,"window_id":0,"alt_pressed":false,"shift_pressed":false,"ctrl_pressed":false,"meta_pressed":false,"pressed":false,"keycode":0,"physical_keycode":45,"key_label":0,"unicode":45,"location":0,"echo":false,"script":null)
|
||||
]
|
||||
}
|
||||
time_reset={
|
||||
"deadzone": 0.2,
|
||||
"events": [Object(InputEventKey,"resource_local_to_scene":false,"resource_name":"","device":-1,"window_id":0,"alt_pressed":false,"shift_pressed":false,"ctrl_pressed":false,"meta_pressed":false,"pressed":false,"keycode":0,"physical_keycode":82,"key_label":0,"unicode":114,"location":0,"echo":false,"script":null)
|
||||
]
|
||||
}
|
||||
|
||||
[layer_names]
|
||||
|
||||
2d_physics/layer_1="ship_hull"
|
||||
2d_physics/layer_2="ship_components"
|
||||
2d_physics/layer_3="celestial_bodies"
|
||||
2d_physics/layer_4="projectiles"
|
||||
|
||||
[physics]
|
||||
|
||||
3d/default_linear_damp=0.0
|
||||
3d/sleep_threshold_linear=0.0
|
||||
2d/default_gravity=0.0
|
||||
2d/default_gravity_vector=Vector2(0, 0)
|
||||
2d/default_linear_damp=0.0
|
||||
2d/sleep_threshold_linear=0.0
|
||||
|
||||
[plugins]
|
||||
|
||||
ai_assistant_hub/llm_api="ollama_api"
|
||||
ai_assistant_hub/preferences/thinking_target=0
|
||||
ai_assistant_hub/preferences/skip_greeting=false
|
||||
ai_assistant_hub/preferences/always_scroll_to_bottom=false
|
||||
|
||||
[rendering]
|
||||
|
||||
viewport/transparent_background=true
|
||||
13
reinit_submodules.sh
Normal file
13
reinit_submodules.sh
Normal file
@ -0,0 +1,13 @@
|
||||
#!/bin/sh
|
||||
|
||||
set -e
|
||||
|
||||
git config -f .gitmodules --get-regexp '^submodule\..*\.path$' |
|
||||
while read path_key local_path
|
||||
do
|
||||
url_key=$(echo $path_key | sed 's/\.path/.url/')
|
||||
url=$(git config -f .gitmodules --get "$url_key")
|
||||
git submodule add $url $local_path
|
||||
done
|
||||
|
||||
# https://stackoverflow.com/questions/11258737/restore-git-submodules-from-gitmodules
|
||||
@ -1,19 +0,0 @@
|
||||
class_name Asteroid
|
||||
extends CelestialBody
|
||||
|
||||
# The orbital radius for this asteroid.
|
||||
var orbital_radius: float
|
||||
|
||||
func get_class_name() -> String:
|
||||
return "Asteroid"
|
||||
|
||||
# Called when the node enters the scene tree for the first time.
|
||||
func _ready() -> void:
|
||||
# An Asteroid has negligible mass for physics calculations.
|
||||
#mass = 0.001
|
||||
radius = 5.0
|
||||
|
||||
# You can set a default texture here.
|
||||
# texture = preload("res://assets/asteroid_texture.png")
|
||||
|
||||
super._ready()
|
||||
@ -1 +0,0 @@
|
||||
uid://c816xae77cbmq
|
||||
@ -1,7 +0,0 @@
|
||||
[gd_scene load_steps=2 format=3 uid="uid://bawsujtlpmh5r"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://c816xae77cbmq" path="res://scenes/celestial_bodies/asteroid.gd" id="1_akfqu"]
|
||||
|
||||
[node name="Asteroid" type="RigidBody2D"]
|
||||
script = ExtResource("1_akfqu")
|
||||
metadata/_custom_type_script = "uid://c816xae77cbmq"
|
||||
@ -1,19 +0,0 @@
|
||||
class_name Moon
|
||||
extends CelestialBody
|
||||
|
||||
# The orbital radius for this moon.
|
||||
var orbital_radius: float
|
||||
|
||||
func get_class_name() -> String:
|
||||
return "Moon"
|
||||
|
||||
# Called when the node enters the scene tree for the first time.
|
||||
func _ready() -> void:
|
||||
# A Moon has a smaller mass than a planet.
|
||||
#mass = 100.0
|
||||
radius = 5.0
|
||||
|
||||
# You can set a default texture here.
|
||||
# texture = preload("res://assets/moon_texture.png")
|
||||
|
||||
super._ready()
|
||||
@ -1 +0,0 @@
|
||||
uid://b1xsx7er22nxn
|
||||
@ -1,7 +0,0 @@
|
||||
[gd_scene load_steps=2 format=3 uid="uid://74ppvxcw8an4"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://b1xsx7er22nxn" path="res://scenes/celestial_bodies/moon.gd" id="1_530pw"]
|
||||
|
||||
[node name="Moon" type="RigidBody2D"]
|
||||
script = ExtResource("1_530pw")
|
||||
metadata/_custom_type_script = "uid://bn1u2xood3vs6"
|
||||
@ -1,19 +0,0 @@
|
||||
class_name Planet
|
||||
extends CelestialBody
|
||||
|
||||
# The orbital radius for this planet.
|
||||
var orbital_radius: float
|
||||
|
||||
func get_class_name() -> String:
|
||||
return "Planet"
|
||||
|
||||
# Called when the node enters the scene tree for the first time.
|
||||
func _ready() -> void:
|
||||
# A Planet has a smaller mass than a star.
|
||||
#mass = 1000.0
|
||||
radius = 10.0
|
||||
|
||||
# You can set a default texture here.
|
||||
# texture = preload("res://assets/planet_texture.png")
|
||||
|
||||
super._ready()
|
||||
@ -1 +0,0 @@
|
||||
uid://5f6ipgu65urb
|
||||
@ -1,7 +0,0 @@
|
||||
[gd_scene load_steps=2 format=3 uid="uid://clt4qlsjcfgln"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://5f6ipgu65urb" path="res://scenes/celestial_bodies/planet.gd" id="1_cktii"]
|
||||
|
||||
[node name="Planet" type="RigidBody2D"]
|
||||
script = ExtResource("1_cktii")
|
||||
metadata/_custom_type_script = "uid://bn1u2xood3vs6"
|
||||
@ -1,16 +0,0 @@
|
||||
class_name Star
|
||||
extends CelestialBody
|
||||
|
||||
func get_class_name() -> String:
|
||||
return "Star"
|
||||
|
||||
# Called when the node enters the scene tree for the first time.
|
||||
func _ready() -> void:
|
||||
# A Star has no primary and a very large mass.
|
||||
primary = null
|
||||
radius = 100.0
|
||||
|
||||
# You can set a default texture here, or assign it in the Inspector.
|
||||
# texture = preload("res://assets/star_texture.png")
|
||||
|
||||
super._ready()
|
||||
@ -1 +0,0 @@
|
||||
uid://um2sfghmii42
|
||||
@ -1,7 +0,0 @@
|
||||
[gd_scene load_steps=2 format=3 uid="uid://5uqp4amjj7ww"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://um2sfghmii42" path="res://scripts/star.gd" id="1_mcqwg"]
|
||||
|
||||
[node name="Star" type="RigidBody2D"]
|
||||
script = ExtResource("1_mcqwg")
|
||||
metadata/_custom_type_script = "uid://bn1u2xood3vs6"
|
||||
@ -1,19 +0,0 @@
|
||||
class_name Station
|
||||
extends CelestialBody
|
||||
|
||||
# The orbital radius for this station.
|
||||
var orbital_radius: float
|
||||
|
||||
func get_class_name() -> String:
|
||||
return "Station"
|
||||
|
||||
# Called when the node enters the scene tree for the first time.
|
||||
func _ready() -> void:
|
||||
# A Station has negligible mass for physics calculations.
|
||||
#mass = 0.001
|
||||
radius = 1.0
|
||||
|
||||
# You can set a default texture here.
|
||||
# texture = preload("res://assets/station_texture.png")
|
||||
|
||||
super._ready()
|
||||
@ -1 +0,0 @@
|
||||
uid://ulw61oxppwdu
|
||||
@ -1,7 +0,0 @@
|
||||
[gd_scene load_steps=2 format=3 uid="uid://dm3s33o4xhqfv"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://ulw61oxppwdu" path="res://scripts/station.gd" id="1_rod8h"]
|
||||
|
||||
[node name="Station" type="RigidBody2D"]
|
||||
script = ExtResource("1_rod8h")
|
||||
metadata/_custom_type_script = "uid://bn1u2xood3vs6"
|
||||
@ -1,71 +0,0 @@
|
||||
extends CharacterBody2D
|
||||
class_name PilotBall
|
||||
|
||||
# Local movement speed when unattached (e.g., inside a ship or during EVA)
|
||||
const LOCAL_SPEED = 200.0
|
||||
|
||||
var attached_to_station: Node2D = null
|
||||
var owning_ship: RigidBody2D = null # The ship the character is currently anchored to.
|
||||
|
||||
func _ready():
|
||||
# Assume the ship is a parent somewhere up the tree for now.
|
||||
# This should be set upon spawning inside a ship.
|
||||
owning_ship = get_parent().find_parent("Spaceship")
|
||||
|
||||
func _physics_process(delta):
|
||||
# If attached, do not move locally. The station handles movement control (thrusters).
|
||||
if is_attached():
|
||||
velocity = Vector2.ZERO
|
||||
return
|
||||
|
||||
# Local movement: Use A/D/W/S to move the ball around.
|
||||
var input_direction = Input.get_vector("move_left", "move_right", "move_up", "move_down")
|
||||
velocity = input_direction * LOCAL_SPEED
|
||||
move_and_slide()
|
||||
|
||||
func is_attached():
|
||||
return attached_to_station != null
|
||||
|
||||
func attach(station: Node2D):
|
||||
if is_attached(): return
|
||||
|
||||
attached_to_station = station
|
||||
|
||||
# 1. Store the global position before changing parent.
|
||||
var old_global_pos = global_position
|
||||
|
||||
# 2. Change the parent to the station/ship (Anchoring)
|
||||
# This makes the ball's movement purely relative to the ship.
|
||||
reparent(station)
|
||||
|
||||
# 3. Reset local position. Its new global position is defined relative to the ship/station.
|
||||
global_position = old_global_pos
|
||||
|
||||
# 4. Notify the station it is now in control
|
||||
station.set_pilot(self)
|
||||
|
||||
func detach():
|
||||
if not is_attached(): return
|
||||
|
||||
var station = attached_to_station
|
||||
attached_to_station = null
|
||||
|
||||
# 1. Notify the station to release control
|
||||
station.set_pilot(null)
|
||||
|
||||
# 2. Store the current global transform (which is relative to the ship)
|
||||
var new_global_pos = global_position
|
||||
|
||||
# 3. Reparent back to the main world (or a dedicated 'space' node)
|
||||
# This is the critical moment: the node re-enters the high-velocity global space.
|
||||
if owning_ship and owning_ship.get_parent():
|
||||
reparent(owning_ship.get_parent())
|
||||
|
||||
# 4. Restore global position and inherit the ship's massive orbital velocity
|
||||
global_position = new_global_pos
|
||||
velocity = owning_ship.linear_velocity
|
||||
else:
|
||||
# Fallback if ship structure is unknown
|
||||
reparent(get_tree().root)
|
||||
global_position = new_global_pos
|
||||
velocity = Vector2.ZERO
|
||||
@ -1 +0,0 @@
|
||||
uid://dxngvoommn5f1
|
||||
@ -1,14 +0,0 @@
|
||||
[gd_scene load_steps=3 format=3 uid="uid://chgycmkkaf7jv"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://dxngvoommn5f1" path="res://scenes/characters/pilot_ball.gd" id="1_rhbna"]
|
||||
|
||||
[sub_resource type="CircleShape2D" id="CircleShape2D_6jclb"]
|
||||
|
||||
[node name="PilotBall" type="CharacterBody2D"]
|
||||
script = ExtResource("1_rhbna")
|
||||
|
||||
[node name="CollisionShape2D" type="CollisionShape2D" parent="."]
|
||||
shape = SubResource("CircleShape2D_6jclb")
|
||||
debug_color = Color(0.61528, 0.358023, 1, 1)
|
||||
|
||||
[node name="Sprite2D" type="Sprite2D" parent="."]
|
||||
@ -1,82 +0,0 @@
|
||||
[gd_scene load_steps=4 format=3 uid="uid://c77wxeb7gpplw"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://6co67nfy8ngb" path="res://scenes/ship/builder/module.gd" id="1_mtskc"]
|
||||
[ext_resource type="PackedScene" uid="uid://bho8x10x4oab7" path="res://scenes/ship/builder/pieces/hullplate.tscn" id="2_aovrk"]
|
||||
[ext_resource type="PackedScene" uid="uid://d3hitk62fice4" path="res://scenes/ship/builder/pieces/bulkhead.tscn" id="4_dwgsg"]
|
||||
|
||||
[node name="Module" type="Node2D"]
|
||||
position = Vector2(-50, 50)
|
||||
script = ExtResource("1_mtskc")
|
||||
metadata/_custom_type_script = "uid://0isnsk356que"
|
||||
|
||||
[node name="StructuralContainer" type="Node2D" parent="."]
|
||||
|
||||
[node name="Hullplate" parent="StructuralContainer" instance=ExtResource("2_aovrk")]
|
||||
|
||||
[node name="@StaticBody2D@31031" parent="StructuralContainer" instance=ExtResource("2_aovrk")]
|
||||
position = Vector2(0, 100)
|
||||
|
||||
[node name="@StaticBody2D@31033" parent="StructuralContainer" instance=ExtResource("2_aovrk")]
|
||||
position = Vector2(100, 100)
|
||||
|
||||
[node name="@StaticBody2D@31035" parent="StructuralContainer" instance=ExtResource("2_aovrk")]
|
||||
position = Vector2(100, 0)
|
||||
|
||||
[node name="@StaticBody2D@31037" parent="StructuralContainer" instance=ExtResource("2_aovrk")]
|
||||
position = Vector2(100, -100)
|
||||
|
||||
[node name="@StaticBody2D@31039" parent="StructuralContainer" instance=ExtResource("2_aovrk")]
|
||||
position = Vector2(100, -200)
|
||||
|
||||
[node name="@StaticBody2D@31041" parent="StructuralContainer" instance=ExtResource("2_aovrk")]
|
||||
position = Vector2(0, -200)
|
||||
|
||||
[node name="@StaticBody2D@31043" parent="StructuralContainer" instance=ExtResource("2_aovrk")]
|
||||
position = Vector2(0, -100)
|
||||
|
||||
[node name="Bulkhead" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(-50, 100)
|
||||
|
||||
[node name="@StaticBody2D@31046" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(-50, 0)
|
||||
|
||||
[node name="@StaticBody2D@31048" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(-50, -100)
|
||||
|
||||
[node name="@StaticBody2D@31050" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(-50, -200)
|
||||
|
||||
[node name="@StaticBody2D@31052" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(150, -200)
|
||||
|
||||
[node name="@StaticBody2D@31054" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(150, -100)
|
||||
|
||||
[node name="@StaticBody2D@31056" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(150, 0)
|
||||
|
||||
[node name="@StaticBody2D@31058" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(150, 100)
|
||||
|
||||
[node name="@StaticBody2D@31060" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(0, 150)
|
||||
rotation = 1.5708
|
||||
|
||||
[node name="@StaticBody2D@31062" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(100, 150)
|
||||
rotation = 1.5708
|
||||
|
||||
[node name="@StaticBody2D@31064" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(0, -250)
|
||||
rotation = 1.5708
|
||||
|
||||
[node name="@StaticBody2D@31066" parent="StructuralContainer" instance=ExtResource("4_dwgsg")]
|
||||
position = Vector2(100, -250)
|
||||
rotation = 1.5708
|
||||
|
||||
[node name="HullVolumeContainer" type="Node2D" parent="."]
|
||||
|
||||
[node name="AtmosphereVisualizer" type="Node2D" parent="."]
|
||||
|
||||
[node name="Camera2D" type="Camera2D" parent="."]
|
||||
position = Vector2(50, -50)
|
||||
@ -1,48 +0,0 @@
|
||||
class_name Module
|
||||
extends OrbitalBody2D
|
||||
|
||||
@onready var structural_container: Node2D = $StructuralContainer
|
||||
@onready var hull_volume_container: Node2D = $HullVolumeContainer
|
||||
|
||||
# The function name is updated to reflect its new, limited scope.
|
||||
func _recalculate_collision_shape():
|
||||
# This logic should typically be on the main Spaceship node,
|
||||
# but for modularity, the Module can trigger it on its children.
|
||||
|
||||
# 1. Clear any existing combined collision shape on this module.
|
||||
# (You would likely have a central CollisionShape2D node for the combined shape)
|
||||
# var combined_shape_node = find_child("CombinedCollisionShape")
|
||||
# if combined_shape_node:
|
||||
# for child in combined_shape_node.get_children(): child.queue_free()
|
||||
|
||||
|
||||
# 2. Iterate through all StructuralPiece children (which are now OrbitalBody2D)
|
||||
# and gather their global collision transforms/shapes.
|
||||
var combined_polygons = []
|
||||
|
||||
for child in get_children():
|
||||
# StructuralPiece now inherits OrbitalBody2D, so this check is valid
|
||||
if child is StructuralPiece:
|
||||
# You would use logic here to transform the piece's local shape
|
||||
# into the Module's local space and add it to the list.
|
||||
|
||||
# Example Placeholder (requires full implementation):
|
||||
# var piece_collision_shape = child.find_child("CollisionShape2D")
|
||||
# if piece_collision_shape:
|
||||
# combined_polygons.append(piece_collision_shape.shape.points)
|
||||
pass
|
||||
|
||||
# 3. Create a new shape (e.g., ConcavePolygonShape2D) and assign it.
|
||||
# This part is complex and usually requires an external library or custom code
|
||||
# to merge multiple 2D shapes efficiently.
|
||||
|
||||
# After implementation, you may want to signal the change:
|
||||
# SignalBus.module_structure_changed.emit(self)
|
||||
|
||||
# NOTE: The OrbitalBody2D's _update_mass_and_inertia() takes care of mass and center of mass!
|
||||
pass
|
||||
|
||||
func clear_module():
|
||||
for piece in structural_container.get_children():
|
||||
piece.queue_free()
|
||||
_recalculate_collision_shape()
|
||||
@ -1,13 +0,0 @@
|
||||
[gd_scene load_steps=2 format=3 uid="uid://cm0rohkr6khd1"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://6co67nfy8ngb" path="res://scenes/ship/builder/module.gd" id="1_b1h2b"]
|
||||
|
||||
[node name="Module" type="Node2D"]
|
||||
script = ExtResource("1_b1h2b")
|
||||
metadata/_custom_type_script = "uid://0isnsk356que"
|
||||
|
||||
[node name="StructuralContainer" type="Node2D" parent="."]
|
||||
|
||||
[node name="HullVolumeContainer" type="Node2D" parent="."]
|
||||
|
||||
[node name="AtmosphereVisualizer" type="Node2D" parent="."]
|
||||
@ -1,28 +0,0 @@
|
||||
[gd_scene load_steps=3 format=3 uid="uid://d3hitk62fice4"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://b7f8x2qimvn37" path="res://scenes/ship/builder/pieces/structural_piece.gd" id="1_1wp2n"]
|
||||
|
||||
[sub_resource type="RectangleShape2D" id="RectangleShape2D_1wp2n"]
|
||||
size = Vector2(10, 100)
|
||||
|
||||
[node name="Bulkhead" type="StaticBody2D"]
|
||||
collision_layer = 5
|
||||
script = ExtResource("1_1wp2n")
|
||||
metadata/_custom_type_script = "uid://b7f8x2qimvn37"
|
||||
|
||||
[node name="CollisionShape2D" type="CollisionShape2D" parent="."]
|
||||
shape = SubResource("RectangleShape2D_1wp2n")
|
||||
|
||||
[node name="ColorRect" type="ColorRect" parent="."]
|
||||
anchors_preset = 8
|
||||
anchor_left = 0.5
|
||||
anchor_top = 0.5
|
||||
anchor_right = 0.5
|
||||
anchor_bottom = 0.5
|
||||
offset_left = -5.0
|
||||
offset_top = -50.0
|
||||
offset_right = 5.0
|
||||
offset_bottom = 50.0
|
||||
grow_horizontal = 2
|
||||
grow_vertical = 2
|
||||
color = Color(0.6, 0.6, 0.6, 1)
|
||||
@ -1,28 +0,0 @@
|
||||
[gd_scene load_steps=3 format=3 uid="uid://bho8x10x4oab7"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://b7f8x2qimvn37" path="res://scenes/ship/builder/pieces/structural_piece.gd" id="1_ecow4"]
|
||||
|
||||
[sub_resource type="RectangleShape2D" id="RectangleShape2D_1wp2n"]
|
||||
size = Vector2(100, 100)
|
||||
|
||||
[node name="Hullplate" type="StaticBody2D"]
|
||||
collision_mask = 0
|
||||
script = ExtResource("1_ecow4")
|
||||
metadata/_custom_type_script = "uid://b7f8x2qimvn37"
|
||||
|
||||
[node name="CollisionShape2D" type="CollisionShape2D" parent="."]
|
||||
shape = SubResource("RectangleShape2D_1wp2n")
|
||||
|
||||
[node name="ColorRect" type="ColorRect" parent="."]
|
||||
anchors_preset = 8
|
||||
anchor_left = 0.5
|
||||
anchor_top = 0.5
|
||||
anchor_right = 0.5
|
||||
anchor_bottom = 0.5
|
||||
offset_left = -50.0
|
||||
offset_top = -50.0
|
||||
offset_right = 50.0
|
||||
offset_bottom = 50.0
|
||||
grow_horizontal = 2
|
||||
grow_vertical = 2
|
||||
color = Color(0.4, 0.4, 0.4, 1)
|
||||
@ -1,20 +0,0 @@
|
||||
@tool
|
||||
class_name StructuralPiece
|
||||
extends OrbitalBody2D
|
||||
|
||||
# Does this piece block atmosphere? (e.g., a hull plate would, a girder would not).
|
||||
@export var is_pressurized: bool = true
|
||||
|
||||
# The health of this specific piece.
|
||||
@export var health: float = 100.0
|
||||
|
||||
# This setter is triggered by the editor.
|
||||
var is_preview: bool = false:
|
||||
set(value):
|
||||
is_preview = value
|
||||
if is_preview:
|
||||
# Make the piece translucent if it's a preview.
|
||||
modulate = Color(1, 1, 1, 0.5)
|
||||
else:
|
||||
# Make it opaque if it's a permanent piece.
|
||||
modulate = Color(1, 1, 1, 1)
|
||||
@ -1 +0,0 @@
|
||||
uid://b7f8x2qimvn37
|
||||
@ -1,16 +0,0 @@
|
||||
[gd_scene load_steps=3 format=3 uid="uid://ds4eilbvihjy7"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://b7f8x2qimvn37" path="res://scenes/ship/builder/pieces/structural_piece.gd" id="1_6jsoj"]
|
||||
|
||||
[sub_resource type="CircleShape2D" id="CircleShape2D_jsbwo"]
|
||||
|
||||
[node name="StructuralPiece" type="Node2D"]
|
||||
script = ExtResource("1_6jsoj")
|
||||
metadata/_custom_type_script = "uid://0isnsk356que"
|
||||
|
||||
[node name="CollisionShape2D" type="CollisionShape2D" parent="."]
|
||||
shape = SubResource("CircleShape2D_jsbwo")
|
||||
|
||||
[node name="ColorRect" type="ColorRect" parent="."]
|
||||
offset_right = 40.0
|
||||
offset_bottom = 40.0
|
||||
@ -1,2 +0,0 @@
|
||||
class_name ShipComponent
|
||||
extends OrbitalBody2D
|
||||
@ -1,117 +0,0 @@
|
||||
# Thruster.gd
|
||||
class_name Thruster
|
||||
extends ShipComponent
|
||||
|
||||
@onready var pin_joint_a: PinJoint2D = $PinJointA
|
||||
@onready var pin_joint_b: PinJoint2D = $PinJointB
|
||||
|
||||
# Get a reference to the parent ship.
|
||||
@onready var ship: Spaceship = GameManager._find_parent_ship(self)
|
||||
|
||||
# Max force the thruster can produce (in scaled Newtons).
|
||||
@export var max_thrust: float = 0.1
|
||||
|
||||
# Engine efficiency. Higher is better (more "bang for your buck").
|
||||
# Measures how much momentum change you get per unit of fuel.
|
||||
@export var specific_impulse_isp: float = 300.0
|
||||
|
||||
# The type of fuel resource this thruster consumes.
|
||||
@export var enabled: bool = true
|
||||
@export var fuel_resource_name: String = "ChemicalFuel"
|
||||
@export var main_thruster: bool = true
|
||||
|
||||
# A state variable to track if the thruster is active
|
||||
var is_firing: bool = false
|
||||
|
||||
func _ready() -> void:
|
||||
super()
|
||||
|
||||
# --- Self-connecting logic ---
|
||||
if ship and ship.get_path():
|
||||
var ship_path = ship.get_path()
|
||||
var self_path = get_path()
|
||||
|
||||
# --- Configure Pin Joint A ---
|
||||
pin_joint_a.node_b = ship_path
|
||||
|
||||
# --- Configure Pin Joint B ---
|
||||
pin_joint_b.node_b = ship_path
|
||||
else:
|
||||
print("Thruster Warning: 'Attach To Node' path is not set for ", self.name)
|
||||
|
||||
# This thruster announces its existence to the whole scene tree.
|
||||
add_to_group("ship_thrusters")
|
||||
#self.body_entered.connect(_on_body_entered)
|
||||
|
||||
|
||||
# This function calculates how much fuel is needed for a given thrust level and duration.
|
||||
func calculate_fuel_consumption(thrust_force: float, delta_time: float) -> float:
|
||||
if thrust_force <= 0: return 0.0
|
||||
# Standard rocket equation using Isp. g0 is standard gravity (9.81).
|
||||
var mass_flow_rate = thrust_force / (specific_impulse_isp * 9.81)
|
||||
return mass_flow_rate * delta_time
|
||||
|
||||
# --- Public Methods ---
|
||||
func _on_body_entered(body: Node) -> void:
|
||||
# Check if the body we collided with is our own ship.
|
||||
if body is Spaceship:
|
||||
print("COLLISION WARNING: Thruster '%s' collided with the ship hull!" % self.name)
|
||||
else:
|
||||
print("Thruster '%s' collided with: %s" % [self.name, body.name])
|
||||
|
||||
# The controller calls this ONCE to activate the thruster.
|
||||
func turn_on():
|
||||
if enabled:
|
||||
is_firing = true
|
||||
|
||||
# The controller calls this ONCE to deactivate the thruster.
|
||||
func turn_off():
|
||||
is_firing = false
|
||||
|
||||
# --- Godot Physics Callback ---
|
||||
func _physics_process(delta: float):
|
||||
if not enabled:
|
||||
is_firing = false
|
||||
|
||||
# If the thruster is active, apply a constant central force in its local "up" direction.
|
||||
if is_firing:
|
||||
apply_thrust_force()
|
||||
#apply_central_force(Vector2.UP * -max_thrust)
|
||||
|
||||
# Also, ensure the visual effect is running
|
||||
queue_redraw()
|
||||
|
||||
# Function called by the ThrusterController system to fire the thruster
|
||||
func apply_thrust_force():
|
||||
if is_firing:
|
||||
# 1. Calculate the local force vector (magnitude and direction)
|
||||
var local_force = Vector2.UP * max_thrust
|
||||
|
||||
# 2. FIX: Convert the force to global space using ONLY the rotation (basis).
|
||||
# This ensures the force vector's magnitude is not corrupted by the thruster's global position.
|
||||
# NOTE: This replaces the problematic global_transform * vector or global_transform.xform(vector)
|
||||
var force_vector = global_transform.basis_xform(local_force)
|
||||
|
||||
# 3. Apply the force to itself.
|
||||
apply_force(force_vector, global_position)
|
||||
|
||||
func _draw():
|
||||
# This function is only called if the thruster is firing (due to queue_redraw)
|
||||
if not is_firing:
|
||||
return
|
||||
|
||||
# --- Draw a fiery, flickering cone ---
|
||||
# The plume goes in the OPPOSITE direction of the thrust
|
||||
var plume_direction = Vector2.DOWN
|
||||
var plume_length = randf_range(20.0, 30.0) # Random length for a flickering effect
|
||||
|
||||
# Define the 3 points of a triangle for the cone
|
||||
var tip = plume_direction * plume_length
|
||||
var base_offset = plume_direction.orthogonal() * 8.0
|
||||
var base1 = base_offset
|
||||
var base2 = -base_offset
|
||||
|
||||
var points = PackedVector2Array([base1, tip, base2])
|
||||
|
||||
# Draw the cone with a fiery color
|
||||
draw_polygon(points, PackedColorArray([Color.ORANGE_RED, Color.GOLD, Color.ORANGE_RED]))
|
||||
@ -1,18 +0,0 @@
|
||||
class_name ShipSignalBus
|
||||
extends Node
|
||||
|
||||
# --- Navigation & Maneuvering Events ---
|
||||
# Emitted when a maneuver plan is calculated.
|
||||
signal maneuver_planned(plan)
|
||||
|
||||
# Emitted to command the start of a timed rotation.
|
||||
signal timed_rotation_commanded(target_rotation_rad, time_window)
|
||||
|
||||
# Emitted to command the start of a timed main engine burn.
|
||||
signal timed_burn_commanded(duration)
|
||||
|
||||
# --- Thruster & Ship Status Events ---
|
||||
# Emitted when the main engine starts or stops firing.
|
||||
signal main_engine_state_changed(is_firing: bool, total_thrust: float)
|
||||
# Emitted when RCS thrusters are fired.
|
||||
signal rcs_state_changed(is_firing: bool, torque: float)
|
||||
@ -1 +0,0 @@
|
||||
uid://w1546qtaupd2
|
||||
@ -1,84 +0,0 @@
|
||||
# Spaceship.gd
|
||||
class_name Spaceship
|
||||
extends OrbitalBody2D
|
||||
|
||||
@export var ship_name: String = "Stardust Drifter"
|
||||
@export var dry_mass: float = 1000.0 # Mass of the ship without fuel/cargo (in kg)
|
||||
@export var hull_integrity: float = 100.0
|
||||
|
||||
@onready var camera: Camera2D = $Camera2D
|
||||
|
||||
@export_category("Camera")
|
||||
@export var zoom_speed: float = 1.0
|
||||
var current_time_scale: float = Engine.time_scale
|
||||
|
||||
# --- Node References to Modular Systems ---
|
||||
@onready var signal_bus: ShipSignalBus = $SignalBus
|
||||
@onready var thruster_controller: ThrusterController = $ThrusterController
|
||||
@onready var fuel_system = $FuelSystem
|
||||
@onready var life_support = $LifeSupport
|
||||
@onready var navigation_computer = $NavigationComputer
|
||||
# @onready var weapon_system = $WeaponSystem
|
||||
# @onready var power_grid = $PowerGrid
|
||||
|
||||
func _ready() -> void:
|
||||
super()
|
||||
GameManager.register_ship(self)
|
||||
|
||||
# Give the navigation computer a reference to this ship
|
||||
if navigation_computer:
|
||||
navigation_computer.ship = self
|
||||
|
||||
camera.make_current()
|
||||
|
||||
# This function will now handle all non-UI input for the player-controlled ship.
|
||||
func _unhandled_input(event: InputEvent) -> void:
|
||||
# --- Map Toggling ---
|
||||
if event.is_action_pressed("ui_map_mode"):
|
||||
# Instead of showing/hiding a node directly, we broadcast our intent.
|
||||
# The NavigationComputer will be listening for this global signal.
|
||||
SignalBus.emit_signal("map_mode_toggled")
|
||||
|
||||
# --- Time Scale Controls ---
|
||||
if event.is_action_pressed("time_increase"):
|
||||
var new_value = min(current_time_scale * 1.2, 1000)
|
||||
current_time_scale = clamp(new_value, 0.5, 1000)
|
||||
Engine.time_scale = current_time_scale
|
||||
|
||||
elif event.is_action_pressed("time_decrease"):
|
||||
var new_value = max(current_time_scale * 0.833, 0.1)
|
||||
current_time_scale = clamp(new_value, 0.5, 1000)
|
||||
Engine.time_scale = current_time_scale
|
||||
|
||||
elif event.is_action_pressed("time_reset"):
|
||||
Engine.time_scale = 1.0
|
||||
|
||||
# --- Public API for Ship Management ---
|
||||
# Call this to take damage. Damage can have a position for breach effects.
|
||||
func take_damage(amount: float, damage_position: Vector2):
|
||||
hull_integrity -= amount
|
||||
print("%s hull integrity at %.1f%%" % [ship_name, hull_integrity])
|
||||
|
||||
if hull_integrity <= 0:
|
||||
destroy_ship()
|
||||
else:
|
||||
# Check if the hit caused a hull breach
|
||||
life_support.check_for_breach(damage_position)
|
||||
|
||||
func destroy_ship():
|
||||
print("%s has been destroyed!" % ship_name)
|
||||
queue_free()
|
||||
|
||||
# --- Signal Handlers ---
|
||||
#func _on_fuel_mass_changed():
|
||||
# Update the ship's total mass when fuel is consumed or added
|
||||
#update_total_mass()
|
||||
|
||||
func _on_hull_breach(breach_position: Vector2, force_vector: Vector2):
|
||||
# A hull breach applies a continuous force at a specific point
|
||||
# For simplicity, we can apply it as a central force and torque here
|
||||
var force = force_vector * 100 # Scale the force
|
||||
|
||||
# Calculate torque: Torque = r x F (cross product of position vector and force)
|
||||
var position_relative_to_center = breach_position - self.global_position
|
||||
var torque = position_relative_to_center.cross(force)
|
||||
@ -1 +0,0 @@
|
||||
uid://dyqbk4lcx3mhq
|
||||
@ -1,63 +0,0 @@
|
||||
[gd_scene load_steps=9 format=3 uid="uid://dlck1lyrn1xvp"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://dyqbk4lcx3mhq" path="res://scenes/ship/spaceship.gd" id="1_ae4p7"]
|
||||
[ext_resource type="Script" uid="uid://c0bx113ifxyh8" path="res://scenes/ship/systems/thruster_controller.gd" id="2_xs8u7"]
|
||||
[ext_resource type="PackedScene" uid="uid://c77wxeb7gpplw" path="res://scenes/modules/test_module.tscn" id="2_y58gg"]
|
||||
[ext_resource type="Script" uid="uid://dx3uerblskj5r" path="res://scenes/ship/systems/fuel_system.gd" id="3_xs8u7"]
|
||||
[ext_resource type="Script" uid="uid://buyp6t5cppitw" path="res://scenes/ship/systems/life_support.gd" id="4_v0rat"]
|
||||
[ext_resource type="PackedScene" uid="uid://cxpjm8tp3l1j7" path="res://scenes/ship/systems/navigation_computer.tscn" id="5_6nyhl"]
|
||||
[ext_resource type="Script" uid="uid://w1546qtaupd2" path="res://scenes/ship/ship_signal_bus.gd" id="7_yl4tl"]
|
||||
[ext_resource type="PackedScene" uid="uid://c0bb77rmyatr0" path="res://scenes/ship/components/thruster.tscn" id="8_oedjh"]
|
||||
|
||||
[node name="Spaceship" type="Node2D"]
|
||||
script = ExtResource("1_ae4p7")
|
||||
base_mass = 2000.0
|
||||
inertia = 500.0
|
||||
metadata/_custom_type_script = "uid://0isnsk356que"
|
||||
|
||||
[node name="Module" parent="." instance=ExtResource("2_y58gg")]
|
||||
|
||||
[node name="FuelSystem" type="Node" parent="."]
|
||||
script = ExtResource("3_xs8u7")
|
||||
|
||||
[node name="LifeSupport" type="Node" parent="."]
|
||||
script = ExtResource("4_v0rat")
|
||||
|
||||
[node name="NavigationComputer" parent="." instance=ExtResource("5_6nyhl")]
|
||||
|
||||
[node name="Camera2D" type="Camera2D" parent="."]
|
||||
|
||||
[node name="ThrusterController" type="Node2D" parent="."]
|
||||
script = ExtResource("2_xs8u7")
|
||||
|
||||
[node name="RCS1" parent="." instance=ExtResource("8_oedjh")]
|
||||
position = Vector2(-125, 200)
|
||||
rotation = 1.5708
|
||||
main_thruster = false
|
||||
inertia = 0.0
|
||||
|
||||
[node name="RCS2" parent="." instance=ExtResource("8_oedjh")]
|
||||
position = Vector2(-125, -200)
|
||||
rotation = 1.5708
|
||||
main_thruster = false
|
||||
inertia = 0.0
|
||||
|
||||
[node name="RCS3" parent="." instance=ExtResource("8_oedjh")]
|
||||
position = Vector2(125, -200)
|
||||
rotation = -1.5708
|
||||
main_thruster = false
|
||||
inertia = 0.0
|
||||
|
||||
[node name="RCS4" parent="." instance=ExtResource("8_oedjh")]
|
||||
position = Vector2(125, 200)
|
||||
rotation = -1.5708
|
||||
main_thruster = false
|
||||
inertia = 0.0
|
||||
|
||||
[node name="MainEngine" parent="." instance=ExtResource("8_oedjh")]
|
||||
position = Vector2(-1, 226)
|
||||
max_thrust = 100.0
|
||||
inertia = 0.0
|
||||
|
||||
[node name="SignalBus" type="Node" parent="."]
|
||||
script = ExtResource("7_yl4tl")
|
||||
@ -1 +0,0 @@
|
||||
uid://b74hxlsox8ldo
|
||||
@ -1,402 +0,0 @@
|
||||
# NavigationComputer.gd
|
||||
extends Node
|
||||
|
||||
@onready var ship: Spaceship = %Spaceship
|
||||
var ship_signal_bus: ShipSignalBus
|
||||
|
||||
# --- Node References ---
|
||||
@onready var navigation_ui: CanvasLayer = %NavigationUI
|
||||
@onready var map_controller: MapController = %MapController
|
||||
@onready var target_label: Label = %TargetLabel
|
||||
@onready var info_label: Label = %InfoLabel
|
||||
@onready var ship_status_label: Label = %ShipStatusLabel
|
||||
@onready var torque_indicator: ColorRect = %TorqueIndicator
|
||||
@onready var sub_viewport: SubViewport = %SubViewport
|
||||
@onready var ship_view_camera: Camera2D = %ShipViewCamera # Add this reference
|
||||
|
||||
# Buttons for different maneuvers
|
||||
@onready var plan_hohmann_button: Button = %PlanHohmannButton
|
||||
@onready var plan_fast_button: Button = %PlanFastButton
|
||||
@onready var plan_torchship_button: Button = %PlanTorchshipButton
|
||||
@onready var plan_gravity_assist_button: Button = %PlanGravityAssistButton
|
||||
@onready var execute_plan_button: Button = %ExecutePlanButton
|
||||
|
||||
# How many seconds before a burn we should start orienting the ship.
|
||||
const PRE_BURN_ORIENTATION_SECONDS = 30.0 # Give a larger window for the new logic
|
||||
const ROTATION_SAFETY_BUFFER = 10.0 # Seconds to ensure rotation finishes before burn
|
||||
|
||||
# A flag to make sure we only send the signal once per maneuver
|
||||
var rotation_plan_sent = false
|
||||
|
||||
# --- State Management ---
|
||||
enum State { IDLE, PLANNING, WAITING, EXECUTING }
|
||||
var current_state: State = State.IDLE
|
||||
|
||||
# --- Navigation Data ---
|
||||
var source_body: CelestialBody
|
||||
var target_body: CelestialBody
|
||||
|
||||
var current_plan # Can be an array of ImpulsiveBurn or a ContinuousBurnPlan
|
||||
|
||||
# --- Inner classes to hold maneuver data ---
|
||||
class ImpulsiveBurn:
|
||||
var delta_v_magnitude: float
|
||||
var wait_time: float = 0.0
|
||||
var burn_duration: float
|
||||
var desired_rotation_rad: float # The world rotation the ship needs to be in
|
||||
|
||||
class ContinuousBurnPlan:
|
||||
var total_travel_time: float
|
||||
var acceleration_time: float
|
||||
var initial_burn_direction: Vector2 # The world-space direction vector for the burn
|
||||
|
||||
func _ready() -> void:
|
||||
# tell our SubViewport to render the same world as main viewport.
|
||||
if is_instance_valid(sub_viewport):
|
||||
print("NAV COMP: Sub viewport found")
|
||||
sub_viewport.world_2d = get_viewport().world_2d
|
||||
else:
|
||||
print("NAV COMP: Sub viewport not found")
|
||||
|
||||
# Connect to the global signal from the SignalBus
|
||||
SignalBus.map_mode_toggled.connect(on_map_mode_toggled)
|
||||
|
||||
if is_instance_valid(ship):
|
||||
ship_signal_bus = ship.signal_bus
|
||||
|
||||
# Ensure the UI starts hidden
|
||||
if navigation_ui:
|
||||
navigation_ui.hide()
|
||||
|
||||
# Connect UI signals
|
||||
map_controller.body_selected_for_planning.connect(_on_target_selected)
|
||||
plan_hohmann_button.pressed.connect(_on_plan_hohmann_pressed)
|
||||
plan_fast_button.pressed.connect(_on_plan_fast_pressed)
|
||||
plan_torchship_button.pressed.connect(_on_plan_torchship_pressed)
|
||||
plan_gravity_assist_button.pressed.connect(_on_plan_gravity_assist_pressed)
|
||||
execute_plan_button.pressed.connect(_on_execute_plan_pressed)
|
||||
|
||||
ship_status_label.text = ""
|
||||
|
||||
update_ui()
|
||||
|
||||
# Add a background to the UIm
|
||||
_setup_background()
|
||||
|
||||
|
||||
func _setup_background():
|
||||
# --- FIX #1: Add a black, opaque background ---
|
||||
var bg = ColorRect.new()
|
||||
bg.color = Color.BLACK
|
||||
# Add it as the very first child so it's behind everything else.
|
||||
navigation_ui.add_child(bg)
|
||||
navigation_ui.move_child(bg, 0)
|
||||
# Make the background cover the entire screen.
|
||||
bg.anchor_right = 1.0
|
||||
bg.anchor_bottom = 1.0
|
||||
|
||||
# This function is called whenever any node in the game emits the "map_mode_toggled" signal.
|
||||
func on_map_mode_toggled():
|
||||
if navigation_ui:
|
||||
# Toggle the visibility of the UI screen
|
||||
navigation_ui.visible = not navigation_ui.visible
|
||||
|
||||
func _process(delta: float) -> void:
|
||||
# This ensures the viewport camera always mirrors the ship's main camera.
|
||||
if is_instance_valid(ship) and is_instance_valid(ship.camera):
|
||||
if is_instance_valid(ship_view_camera):
|
||||
ship_view_camera.global_transform = ship.camera.global_transform
|
||||
ship_view_camera.zoom = ship.camera.zoom
|
||||
|
||||
_update_ship_status_label()
|
||||
|
||||
if current_state == State.PLANNING and current_plan:
|
||||
if current_plan is Array and not current_plan.is_empty():
|
||||
var first_burn = current_plan[0]
|
||||
# The plan is not locked in, but we can see the window approaching.
|
||||
first_burn.wait_time -= delta
|
||||
var time_str = _format_seconds_to_mmss(first_burn.wait_time)
|
||||
info_label.text = "Optimal window in: %s.\nPress Execute to lock in plan." % time_str
|
||||
if first_burn.wait_time < 0:
|
||||
# If the window is missed during planning, mark the plan as stale.
|
||||
info_label.text = "Transfer window missed. Please plan a new maneuver."
|
||||
current_plan = null
|
||||
update_ui()
|
||||
|
||||
if current_state == State.WAITING and current_plan:
|
||||
if current_plan is Array and not current_plan.is_empty():
|
||||
var next_burn: ImpulsiveBurn = current_plan[0]
|
||||
next_burn.wait_time -= delta
|
||||
var time_str = _format_seconds_to_mmss(next_burn.wait_time)
|
||||
info_label.text = "Time to burn: %s" % time_str
|
||||
|
||||
# --- NEW: Emit the rotation plan ---
|
||||
# When we are inside the orientation window, and haven't sent the plan yet...
|
||||
if not rotation_plan_sent:
|
||||
# The time allowed for rotation is the time we have left, minus a safety buffer.
|
||||
var time_for_rotation = next_burn.wait_time - ROTATION_SAFETY_BUFFER
|
||||
|
||||
# Tell the thruster controller to handle it.
|
||||
ship.signal_bus.emit_signal("timed_rotation_commanded", next_burn.desired_rotation_rad, time_for_rotation)
|
||||
|
||||
rotation_plan_sent = true # Mark the plan as sent
|
||||
|
||||
if next_burn.wait_time <= 0:
|
||||
_execute_maneuver()
|
||||
|
||||
# The EXECUTING state would be handled by a dedicated autopilot script/node
|
||||
|
||||
func update_ui():
|
||||
execute_plan_button.disabled = (current_plan == null or current_state != State.PLANNING)
|
||||
|
||||
if current_state == State.PLANNING:
|
||||
# Show available plans based on engine type
|
||||
|
||||
# TODO change UI to show recommendations based on thruster type
|
||||
#if installed_engine is ChemicalThruster:
|
||||
plan_hohmann_button.show()
|
||||
plan_fast_button.show()
|
||||
plan_gravity_assist_button.show()
|
||||
#elif installed_engine is IonDrive:
|
||||
plan_torchship_button.show()
|
||||
|
||||
# --- Signal Handlers ---
|
||||
|
||||
func _on_target_selected(body: CelestialBody):
|
||||
if current_state == State.IDLE or current_state == State.PLANNING:
|
||||
target_body = body
|
||||
|
||||
# Assume ship is orbiting the target's primary (e.g., the star)
|
||||
current_plan = null
|
||||
current_state = State.PLANNING
|
||||
target_label.text = "Target: %s." % target_body.name
|
||||
info_label.text = "Select a maneuver."
|
||||
update_ui()
|
||||
|
||||
func _on_execute_plan_pressed():
|
||||
if current_plan:
|
||||
current_state = State.WAITING
|
||||
update_ui()
|
||||
|
||||
# --- Planning Function Calls ---
|
||||
func _on_plan_hohmann_pressed():
|
||||
current_plan = _calculate_hohmann_transfer(source_body, target_body)
|
||||
# TODO: map_controller.draw_planned_trajectory(...)
|
||||
update_ui()
|
||||
|
||||
func _on_plan_fast_pressed():
|
||||
# For simplicity, a "fast" transfer is a Hohmann with a 25% larger transfer orbit
|
||||
current_plan = _calculate_hohmann_transfer(source_body, target_body, 1.25)
|
||||
# TODO: map_controller.draw_planned_trajectory(...)
|
||||
update_ui()
|
||||
|
||||
func _on_plan_torchship_pressed():
|
||||
current_plan = _calculate_brachistochrone_transfer()
|
||||
# TODO: map_controller.draw_planned_trajectory(...)
|
||||
update_ui()
|
||||
|
||||
func _on_plan_gravity_assist_pressed():
|
||||
info_label.text = "Gravity Assist calculation is highly complex and not yet implemented."
|
||||
print("Placeholder for Gravity Assist logic.")
|
||||
|
||||
# --- Calculation and Execution ---
|
||||
func _calculate_hohmann_transfer(source_planet: CelestialBody, target_planet: CelestialBody, transfer_boost_factor: float = 1.0) -> Array:
|
||||
# Get the central star safely from the GameManager.
|
||||
#var ship_current_primary = ship.primary
|
||||
var star = GameManager.get_system_data().star
|
||||
if not is_instance_valid(star):
|
||||
print("Hohmann Error: Could not find star in GameManager.")
|
||||
return []
|
||||
|
||||
# This maneuver requires the ship and target to orbit the same star.
|
||||
if not target_planet:
|
||||
info_label.text = "Invalid Transfer: No target object for intersect."
|
||||
return []
|
||||
|
||||
# mu (μ): The Standard Gravitational Parameter of the star. It's G * M, a constant that simplifies calculations.
|
||||
var mu = OrbitalMechanics.G * star.mass
|
||||
|
||||
# r1: The ship's current orbital radius (distance from the star).
|
||||
var r1 = ship.global_position.distance_to(star.global_position)
|
||||
# r2: The target planet's orbital radius.
|
||||
var r2 = target_planet.global_position.distance_to(star.global_position)
|
||||
|
||||
# --- Hohmann Transfer Calculations ---
|
||||
|
||||
# v_source_orbit: The ship's current circular orbital speed.
|
||||
var v_source_orbit = sqrt(mu / r1)
|
||||
# v_target_orbit: The target planet's circular orbital speed.
|
||||
var v_target_orbit = sqrt(mu / r2)
|
||||
|
||||
# a_transfer: The semi-major axis (average radius) of the elliptical transfer orbit.
|
||||
var a_transfer = (r1 + r2) / 2.0 * transfer_boost_factor
|
||||
|
||||
# v_transfer_periapsis: The required speed at the start of the transfer (periapsis) to get onto the ellipse.
|
||||
var v_transfer_periapsis = sqrt(mu * ((2.0 / r1) - (1.0 / a_transfer)))
|
||||
# v_transfer_apoapsis: The speed the ship will have when it arrives at the end of the transfer (apoapsis).
|
||||
var v_transfer_apoapsis = sqrt(mu * ((2.0 / r2) - (1.0 / a_transfer)))
|
||||
|
||||
# delta_v1: The first burn. The change in speed needed to go from the source orbit to the transfer orbit.
|
||||
var delta_v1 = v_transfer_periapsis - v_source_orbit
|
||||
# delta_v2: The second burn. The change in speed needed to go from the transfer orbit to the target orbit.
|
||||
var delta_v2 = v_target_orbit - v_transfer_apoapsis
|
||||
|
||||
# time_of_flight: Half the period of the elliptical transfer orbit (Kepler's 3rd Law).
|
||||
var time_of_flight = PI * sqrt(pow(a_transfer, 3) / mu)
|
||||
|
||||
# --- Launch Window (Phase Angle) Calculations ---
|
||||
|
||||
# ang_vel_target: The angular speed of the target planet (in radians per second).
|
||||
var ang_vel_target = sqrt(mu / pow(r2, 3))
|
||||
# travel_angle: The angle the target planet will travel through during the ship's flight time.
|
||||
var travel_angle = ang_vel_target * time_of_flight
|
||||
# required_phase_angle: The starting angle needed between the ship and target for a successful intercept.
|
||||
var required_phase_angle = PI - travel_angle
|
||||
|
||||
# vec_to_ship/target: Direction vectors from the star to the ship and target.
|
||||
var vec_to_ship = (ship.global_position - star.global_position).normalized()
|
||||
var vec_to_target = (target_planet.global_position - star.global_position).normalized()
|
||||
# current_phase_angle: The angle between the ship and target right now.
|
||||
var current_phase_angle = vec_to_ship.angle_to(vec_to_target)
|
||||
|
||||
# ang_vel_ship: The ship's current angular speed.
|
||||
var ang_vel_ship = sqrt(mu / pow(r1, 3))
|
||||
# relative_ang_vel: How quickly the ship is catching up to (or falling behind) the target.
|
||||
var relative_ang_vel = ang_vel_ship - ang_vel_target
|
||||
# angle_to_wait: The angular distance the ship needs to "wait" for alignment.
|
||||
var angle_to_wait = current_phase_angle - required_phase_angle
|
||||
# wait_time: The final calculated time in seconds to wait for the optimal launch window.
|
||||
var wait_time = abs(angle_to_wait / relative_ang_vel)
|
||||
|
||||
# --- Final Plan Assembly ---
|
||||
|
||||
# Calculate burn durations
|
||||
var acceleration = ship.thruster_controller.main_engine_max_thrust() / ship.mass
|
||||
var burn_duration1 = delta_v1 / acceleration
|
||||
var burn_duration2 = delta_v2 / acceleration
|
||||
|
||||
var plan = []
|
||||
var burn1 = ImpulsiveBurn.new()
|
||||
burn1.delta_v_magnitude = delta_v1
|
||||
burn1.wait_time = wait_time
|
||||
burn1.burn_duration = burn_duration1
|
||||
# The desired rotation is the angle of the ship's prograde (tangential) velocity vector.
|
||||
burn1.desired_rotation_rad = ship.linear_velocity.angle()
|
||||
plan.append(burn1)
|
||||
|
||||
var burn2 = ImpulsiveBurn.new()
|
||||
burn2.delta_v_magnitude = delta_v2
|
||||
burn2.wait_time = time_of_flight - burn_duration1
|
||||
burn2.burn_duration = burn_duration2
|
||||
# The desired rotation for burn 2 is the tangential direction at the target orbit.
|
||||
burn2.desired_rotation_rad = (target_planet.global_position - star.global_position).orthogonal().angle()
|
||||
plan.append(burn2)
|
||||
|
||||
info_label.text = "Hohmann Plan:\nWait: %d s\nBurn 1: %.1f m/s (%.1f s)" % [wait_time, delta_v1, burn_duration1]
|
||||
return plan
|
||||
|
||||
func _calculate_brachistochrone_transfer() -> ContinuousBurnPlan:
|
||||
var distance = ship.global_position.distance_to(target_body.global_position)
|
||||
var acceleration = ship.thruster_controller.main_engine_max_thrust() / ship.mass
|
||||
if acceleration == 0: return null
|
||||
|
||||
# d = 1/2 * a * t^2 => t = sqrt(2d/a). We do this twice (accel/decel).
|
||||
var time_for_half_journey = sqrt(distance / acceleration)
|
||||
|
||||
var plan = ContinuousBurnPlan.new()
|
||||
plan.total_travel_time = 2 * time_for_half_journey
|
||||
plan.acceleration_time = time_for_half_journey
|
||||
plan.required_acceleration = acceleration
|
||||
|
||||
info_label.text = "Torchship Trajectory Calculated.\nTravel Time: %d s" % plan.total_travel_time
|
||||
return plan
|
||||
|
||||
func _execute_maneuver():
|
||||
if current_state != State.WAITING or not current_plan: return
|
||||
|
||||
current_state = State.EXECUTING
|
||||
var burn: ImpulsiveBurn = current_plan.pop_front()
|
||||
|
||||
# Tell the controller to start burning. Orientation is already handled.
|
||||
ship.signal_bus.emit_signal("timed_burn_commanded", burn.burn_duration)
|
||||
|
||||
# Set up for the next leg of the journey or finish
|
||||
if not current_plan.is_empty():
|
||||
# The next "wait_time" is the coasting period between burns.
|
||||
current_state = State.WAITING
|
||||
|
||||
# Reset the flag here, preparing the system for the *next* burn's rotation command.
|
||||
rotation_plan_sent = false
|
||||
else:
|
||||
current_state = State.IDLE
|
||||
current_plan = null
|
||||
update_ui()
|
||||
|
||||
var _previous_angular_velocity: float = 0.0
|
||||
var actual_applied_torque: float = 0.0
|
||||
|
||||
func _update_ship_status_label():
|
||||
if not is_instance_valid(ship):
|
||||
ship_status_label.text = "NO SHIP DATA"
|
||||
return
|
||||
|
||||
# Build an array of strings for each line of the display
|
||||
var status_lines = []
|
||||
|
||||
var assume_torque = ship.thruster_controller.current_applied_torque
|
||||
|
||||
# Get rotation data from the ship
|
||||
var rotation_deg = rad_to_deg(ship.rotation)
|
||||
var current_angular_velocity = ship.angular_velocity
|
||||
var angular_vel_dps = rad_to_deg(ship.angular_velocity)
|
||||
var delta_omega = ship.angular_velocity - _previous_angular_velocity
|
||||
var delta = get_physics_process_delta_time()
|
||||
|
||||
if delta > 0:
|
||||
var angular_acceleration = delta_omega / delta
|
||||
#actual_applied_torque = ship.accumulated_torque # ship.inertia * angular_acceleration
|
||||
# Update the indicator color based on the comparison.
|
||||
|
||||
_previous_angular_velocity = current_angular_velocity
|
||||
|
||||
# Get the sign of each torque value.
|
||||
var calc_sign = sign(assume_torque)
|
||||
var actual_sign = sign(actual_applied_torque)
|
||||
|
||||
if calc_sign != 0 and calc_sign == actual_sign:
|
||||
# Success: We are commanding a turn, and the physics engine agrees.
|
||||
torque_indicator.color = Color.GREEN
|
||||
elif calc_sign != 0 and actual_sign == 0:
|
||||
# Mismatch: We are commanding a turn, but the physics engine reports no torque.
|
||||
# This is the flicker you are seeing.
|
||||
torque_indicator.color = Color.RED
|
||||
else:
|
||||
# Idle: No torque is being commanded, and none is being applied.
|
||||
torque_indicator.color = Color.DARK_GRAY
|
||||
|
||||
var sensor_torque_sign = "+" if signf(actual_applied_torque) > 0.0 else "-" if signf(actual_applied_torque) < 0.0 else "0"
|
||||
|
||||
|
||||
status_lines.append("Rotation: %.1f deg" % rotation_deg)
|
||||
status_lines.append("Ang. Vel.: %.5f deg/s" % angular_vel_dps)
|
||||
status_lines.append("Assumed Torque: %.2f N·m" % assume_torque)
|
||||
status_lines.append("Sensed Torque: %.2f N·m" % actual_applied_torque)
|
||||
|
||||
# Get burn data from the thruster controller
|
||||
var burn_time = ship.thruster_controller.current_burn_time_remaining
|
||||
var thrust_force = ship.thruster_controller.current_thrust_force
|
||||
status_lines.append("Burn Time: %.1f s" % burn_time)
|
||||
status_lines.append("Thrust: %.5f N" % thrust_force)
|
||||
|
||||
# Join the lines with a newline character and update the label
|
||||
ship_status_label.text = "\n".join(status_lines)
|
||||
|
||||
# Helper function to format a float of seconds into a M:SS string
|
||||
func _format_seconds_to_mmss(seconds_float: float) -> String:
|
||||
if seconds_float < 0:
|
||||
seconds_float = 0
|
||||
var total_seconds = int(seconds_float)
|
||||
var minutes = total_seconds / 60
|
||||
var seconds = total_seconds % 60
|
||||
# "%02d" formats the seconds with a leading zero if needed (e.g., 05)
|
||||
return "%d:%02d" % [minutes, seconds]
|
||||
@ -1 +0,0 @@
|
||||
uid://cq2sgw12uj4jl
|
||||
@ -1,103 +0,0 @@
|
||||
[gd_scene load_steps=4 format=3 uid="uid://cxpjm8tp3l1j7"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://cq2sgw12uj4jl" path="res://scenes/ship/systems/navigation_computer.gd" id="1_ys00n"]
|
||||
[ext_resource type="Script" uid="uid://b74hxlsox8ldo" path="res://scenes/ship/systems/map_controller.gd" id="2_ys00n"]
|
||||
[ext_resource type="PackedScene" uid="uid://c2imrmgjthfdm" path="res://scenes/UI/MapIcon.tscn" id="3_378us"]
|
||||
|
||||
[node name="NavigationComputer" type="Node"]
|
||||
script = ExtResource("1_ys00n")
|
||||
|
||||
[node name="Sprite2D" type="Sprite2D" parent="."]
|
||||
|
||||
[node name="NavigationUI" type="CanvasLayer" parent="."]
|
||||
unique_name_in_owner = true
|
||||
|
||||
[node name="NavigationScreen" type="MarginContainer" parent="NavigationUI"]
|
||||
anchors_preset = 15
|
||||
anchor_right = 1.0
|
||||
anchor_bottom = 1.0
|
||||
grow_horizontal = 2
|
||||
grow_vertical = 2
|
||||
|
||||
[node name="HBoxContainer" type="HBoxContainer" parent="NavigationUI/NavigationScreen"]
|
||||
layout_mode = 2
|
||||
|
||||
[node name="VBoxContainer" type="VBoxContainer" parent="NavigationUI/NavigationScreen/HBoxContainer"]
|
||||
custom_minimum_size = Vector2(250, 0)
|
||||
layout_mode = 2
|
||||
size_flags_horizontal = 4
|
||||
|
||||
[node name="TargetLabel" type="Label" parent="NavigationUI/NavigationScreen/HBoxContainer/VBoxContainer"]
|
||||
unique_name_in_owner = true
|
||||
layout_mode = 2
|
||||
clip_text = true
|
||||
|
||||
[node name="InfoLabel" type="Label" parent="NavigationUI/NavigationScreen/HBoxContainer/VBoxContainer"]
|
||||
unique_name_in_owner = true
|
||||
layout_mode = 2
|
||||
|
||||
[node name="TorqueIndicator" type="ColorRect" parent="NavigationUI/NavigationScreen/HBoxContainer/VBoxContainer"]
|
||||
unique_name_in_owner = true
|
||||
custom_minimum_size = Vector2(20, 20)
|
||||
layout_mode = 2
|
||||
|
||||
[node name="PlanHohmannButton" type="Button" parent="NavigationUI/NavigationScreen/HBoxContainer/VBoxContainer"]
|
||||
unique_name_in_owner = true
|
||||
layout_mode = 2
|
||||
text = "Hohmann Transfer"
|
||||
|
||||
[node name="PlanFastButton" type="Button" parent="NavigationUI/NavigationScreen/HBoxContainer/VBoxContainer"]
|
||||
unique_name_in_owner = true
|
||||
layout_mode = 2
|
||||
text = "Fast Impulse"
|
||||
|
||||
[node name="PlanTorchshipButton" type="Button" parent="NavigationUI/NavigationScreen/HBoxContainer/VBoxContainer"]
|
||||
unique_name_in_owner = true
|
||||
layout_mode = 2
|
||||
text = "Torchship Burn"
|
||||
|
||||
[node name="PlanGravityAssistButton" type="Button" parent="NavigationUI/NavigationScreen/HBoxContainer/VBoxContainer"]
|
||||
unique_name_in_owner = true
|
||||
layout_mode = 2
|
||||
text = "Grav Assist"
|
||||
|
||||
[node name="ExecutePlanButton" type="Button" parent="NavigationUI/NavigationScreen/HBoxContainer/VBoxContainer"]
|
||||
unique_name_in_owner = true
|
||||
layout_mode = 2
|
||||
text = "Launch"
|
||||
|
||||
[node name="MapController" type="Control" parent="NavigationUI/NavigationScreen/HBoxContainer"]
|
||||
unique_name_in_owner = true
|
||||
clip_contents = true
|
||||
layout_mode = 2
|
||||
size_flags_horizontal = 3
|
||||
size_flags_stretch_ratio = 3.0
|
||||
script = ExtResource("2_ys00n")
|
||||
map_icon_scene = ExtResource("3_378us")
|
||||
|
||||
[node name="RightHandPanel" type="VBoxContainer" parent="NavigationUI/NavigationScreen/HBoxContainer"]
|
||||
custom_minimum_size = Vector2(0, 300)
|
||||
layout_mode = 2
|
||||
size_flags_horizontal = 4
|
||||
|
||||
[node name="ShipStatusLabel" type="Label" parent="NavigationUI/NavigationScreen/HBoxContainer/RightHandPanel"]
|
||||
unique_name_in_owner = true
|
||||
layout_mode = 2
|
||||
size_flags_vertical = 0
|
||||
|
||||
[node name="MarginContainer" type="MarginContainer" parent="NavigationUI/NavigationScreen/HBoxContainer/RightHandPanel"]
|
||||
layout_mode = 2
|
||||
size_flags_vertical = 3
|
||||
|
||||
[node name="SubViewportContainer" type="SubViewportContainer" parent="NavigationUI/NavigationScreen/HBoxContainer/RightHandPanel"]
|
||||
layout_mode = 2
|
||||
|
||||
[node name="SubViewport" type="SubViewport" parent="NavigationUI/NavigationScreen/HBoxContainer/RightHandPanel/SubViewportContainer"]
|
||||
unique_name_in_owner = true
|
||||
transparent_bg = true
|
||||
handle_input_locally = false
|
||||
size = Vector2i(320, 180)
|
||||
render_target_update_mode = 4
|
||||
|
||||
[node name="ShipViewCamera" type="Camera2D" parent="NavigationUI/NavigationScreen/HBoxContainer/RightHandPanel/SubViewportContainer/SubViewport"]
|
||||
unique_name_in_owner = true
|
||||
@ -1,375 +0,0 @@
|
||||
# ThrusterController.gd
|
||||
class_name ThrusterController
|
||||
extends Node2D
|
||||
|
||||
# --- References ---
|
||||
@onready var ship: Spaceship = get_parent()
|
||||
var ship_signal_bus: ShipSignalBus
|
||||
|
||||
@onready var main_engines: Array[Thruster] = []
|
||||
@onready var rcs_thrusters: Array[Thruster] = []
|
||||
|
||||
# --- Public Status Variables ---
|
||||
var current_burn_time_remaining: float = 0.0
|
||||
var current_thrust_force: float = 0.0
|
||||
var current_applied_torque: float = 0.0
|
||||
|
||||
# --- Autopilot & Manual Control State ---
|
||||
enum RotationMode { NONE, AUTOPILOT_TURN, MANUAL_HOLD }
|
||||
var rotation_mode: RotationMode = RotationMode.NONE
|
||||
const ATTITUDE_TOLERANCE_RAD = 0.005 # ~1 degree. If error is > this, we correct.
|
||||
|
||||
|
||||
# --- NEW: Inner class to store calibrated data for each thruster ---
|
||||
class ThrusterData:
|
||||
var thruster_node: Thruster
|
||||
var measured_force_vector: Vector2 # The linear push it provides
|
||||
var measured_torque: float # The rotational force it provides
|
||||
var primary_axis: String # e.g., "Linear", "Yaw", "Surge"
|
||||
|
||||
# --- NEW: A dictionary to map thruster nodes to their performance data ---
|
||||
var thruster_data_map: Dictionary[Thruster, ThrusterData] = {}
|
||||
|
||||
var target_rotation_rad: float = 0.0
|
||||
var is_burning: bool = false
|
||||
|
||||
# --- Ship Performance Data (calibrated) ---
|
||||
var max_positive_torque: float = 10000.0 # Default value, will be calibrated
|
||||
var max_negative_torque: float = 10000.0 # Default value, will be calibrated
|
||||
|
||||
# --- Manual Hold Constants (PD Controller) ---
|
||||
@export var HOLD_KP: float = 8000.0 # Proportional gain for stability
|
||||
@export var HOLD_KD: float = 1200.0 # Derivative gain for damping
|
||||
|
||||
# --- Crew Comfort Levels ---
|
||||
const COMFORTABLE_ANGULAR_VELOCITY = 0.5 # radians/sec
|
||||
|
||||
func _ready() -> void:
|
||||
await get_tree().process_frame
|
||||
|
||||
if is_instance_valid(ship):
|
||||
ship_signal_bus = ship.signal_bus
|
||||
ship_signal_bus.timed_rotation_commanded.connect(_on_autopilot_rotation_commanded)
|
||||
ship_signal_bus.timed_burn_commanded.connect(_on_autopilot_main_engine_burn_commanded)
|
||||
|
||||
# Register thrusters
|
||||
var thruster_nodes = get_tree().get_nodes_in_group("ship_thrusters")
|
||||
for thruster: Thruster in thruster_nodes:
|
||||
if thruster.get_parent() == ship:
|
||||
if thruster.main_thruster: main_engines.append(thruster)
|
||||
else: rcs_thrusters.append(thruster)
|
||||
|
||||
await get_tree().physics_frame
|
||||
|
||||
# Calibrate thrusters on startup
|
||||
await calibrate_rcs_performance()
|
||||
command_hold_attitude(0.0)
|
||||
|
||||
|
||||
func _physics_process(_delta: float) -> void:
|
||||
match rotation_mode:
|
||||
RotationMode.MANUAL_HOLD:
|
||||
#if _is_attitude_misaligned() or true:
|
||||
_perform_manual_hold()
|
||||
#if ship: print("AUTOPILOT: Holding attitude.")
|
||||
|
||||
# --- PUBLIC API ---
|
||||
|
||||
# The Navigation Computer calls this.
|
||||
func _on_autopilot_rotation_commanded(new_target_rot: float, time_window: float):
|
||||
rotation_mode = RotationMode.AUTOPILOT_TURN
|
||||
# Start the asynchronous autopilot maneuver
|
||||
_execute_autopilot_rotation(new_target_rot, time_window)
|
||||
|
||||
func _on_autopilot_main_engine_burn_commanded(duration: float):
|
||||
while _is_attitude_misaligned():
|
||||
await get_tree().physics_frame
|
||||
|
||||
_fire_main_engine(duration)
|
||||
|
||||
# The player/manual input would call this.
|
||||
func command_hold_attitude(rotation_rad: float):
|
||||
if rotation_mode != RotationMode.MANUAL_HOLD:
|
||||
print("AUTOPILOT: Engaging manual attitude hold at %.2f deg." % rad_to_deg(rotation_rad))
|
||||
rotation_mode = RotationMode.MANUAL_HOLD
|
||||
target_rotation_rad = rotation_rad
|
||||
|
||||
func command_stop_rotation():
|
||||
if rotation_mode == RotationMode.MANUAL_HOLD:
|
||||
command_hold_attitude(ship.rotation)
|
||||
|
||||
func command_disable_rcs():
|
||||
rotation_mode = RotationMode.NONE
|
||||
shutdown_rcs()
|
||||
print("AUTOPILOT: RCS disabled.")
|
||||
|
||||
# --- Helper for Misalignment Check ---
|
||||
func _is_attitude_misaligned() -> bool:
|
||||
var error = shortest_angle_between(ship.rotation, target_rotation_rad)
|
||||
return abs(error) > ATTITUDE_TOLERANCE_RAD
|
||||
|
||||
func calibrate_rcs_performance() -> void:
|
||||
print("AUTOPILOT: Beginning full RCS calibration protocol...")
|
||||
thruster_data_map.clear()
|
||||
|
||||
# Create a temporary copy as the original arrays may change
|
||||
var all_thrusters_to_test = main_engines + rcs_thrusters
|
||||
|
||||
for thruster in all_thrusters_to_test:
|
||||
var data: ThrusterData = await _calibrate_single_thruster(thruster)
|
||||
thruster_data_map[thruster] = data
|
||||
print(" - Calibrated %s: Force(%.3f, %.3f), Torque(%.3f)" % [thruster.name, data.measured_force_vector.x, data.measured_force_vector.y, data.measured_torque])
|
||||
|
||||
# Now that we have the data, we can update the ship's max torque values
|
||||
max_positive_torque = 0
|
||||
max_negative_torque = 0
|
||||
for data in thruster_data_map.values():
|
||||
if data.measured_torque > 0:
|
||||
max_positive_torque += data.measured_torque
|
||||
else:
|
||||
max_negative_torque += abs(data.measured_torque)
|
||||
|
||||
print("RCS Calibration Complete: Max Pos Torque: %.2f, Max Neg Torque: %.2f" % [max_positive_torque, max_negative_torque])
|
||||
|
||||
# --- 3. Cleanup: Perform a final burn to stop the ship ---
|
||||
# We use the newly calibrated torque to calculate the stop burn time.
|
||||
await _reset_ship_rotation()
|
||||
|
||||
shutdown_rcs()
|
||||
|
||||
# Auto-tune the PD controller with the new values
|
||||
var average_max_torque = (max_positive_torque + max_negative_torque) / 2.0
|
||||
HOLD_KP = average_max_torque * 0.1
|
||||
HOLD_KD = HOLD_KP * 1
|
||||
print("PD Controller Auto-Tuned: Kp set to %.4f, Kd set to %.4f" % [HOLD_KP, HOLD_KD])
|
||||
|
||||
|
||||
func _calibrate_single_thruster(thruster: Thruster) -> ThrusterData:
|
||||
var data = ThrusterData.new()
|
||||
data.thruster_node = thruster
|
||||
|
||||
# Prepare for test: save state, disable damping
|
||||
var initial_velocity = ship.linear_velocity
|
||||
var initial_angular_velocity = ship.angular_velocity
|
||||
|
||||
var test_burn_duration = 0.5 if thruster.main_thruster else 0.2 # A very short burst
|
||||
|
||||
# --- Perform Test Fire ---
|
||||
thruster.turn_on()
|
||||
await get_tree().create_timer(test_burn_duration).timeout
|
||||
thruster.turn_off()
|
||||
|
||||
# Let the physics engine settle for one frame
|
||||
await get_tree().physics_frame
|
||||
|
||||
# --- Measure Results ---
|
||||
var delta_velocity = ship.linear_velocity - initial_velocity
|
||||
var delta_angular_velocity = ship.angular_velocity - initial_angular_velocity
|
||||
|
||||
# --- Calculate Performance ---
|
||||
# Force = mass * acceleration (a = dv/dt)
|
||||
data.measured_force_vector = ship.mass * (delta_velocity / test_burn_duration)
|
||||
# Torque = inertia * angular_acceleration (alpha = dw/dt)
|
||||
data.measured_torque = ship.inertia * (delta_angular_velocity / test_burn_duration)
|
||||
|
||||
return data
|
||||
|
||||
# Resets the ship's rotation and angular velocity to zero.
|
||||
func _reset_ship_rotation() -> void:
|
||||
# Use the calibrated torque to calculate the final stop burn time.
|
||||
if abs(ship.angular_velocity) > 0.01:
|
||||
var stop_torque_dir = -sign(ship.angular_velocity)
|
||||
var stop_torque_mag = max_positive_torque if stop_torque_dir > 0 else max_negative_torque
|
||||
var stop_burn_time = abs((ship.inertia * ship.angular_velocity) / stop_torque_mag)
|
||||
|
||||
var stop_timer = get_tree().create_timer(stop_burn_time)
|
||||
while stop_timer.get_time_left() > 0.0:
|
||||
apply_rotational_thrust(stop_torque_dir * stop_torque_mag)
|
||||
await get_tree().physics_frame
|
||||
|
||||
shutdown_rcs()
|
||||
print("AUTOPILOT: Ship rotation and velocity reset.")
|
||||
|
||||
# --- AUTOPILOT "BANG-COAST-BANG" LOGIC (REFACTORED) ---
|
||||
func _execute_autopilot_rotation(new_target_rot: float, time_window: float):
|
||||
var angle_to_turn = shortest_angle_between(ship.rotation, new_target_rot)
|
||||
|
||||
if abs(angle_to_turn) < 0.01:
|
||||
command_hold_attitude(new_target_rot)
|
||||
return
|
||||
|
||||
# --- NEW: Get the specific torque values for each phase ---
|
||||
var accel_torque = max_positive_torque if angle_to_turn > 0 else max_negative_torque
|
||||
var decel_torque = max_negative_torque if angle_to_turn > 0 else max_positive_torque
|
||||
|
||||
if accel_torque == 0 or decel_torque == 0:
|
||||
print("AUTOPILOT ERROR: Missing thrusters for a full rotation.")
|
||||
return
|
||||
|
||||
# --- NEW: Asymmetrical Burn Calculation ---
|
||||
# This is a more complex kinematic problem. We solve for the peak velocity and individual times.
|
||||
var accel_angular_accel = accel_torque / ship.inertia
|
||||
var decel_angular_accel = decel_torque / ship.inertia
|
||||
|
||||
# Solve for peak angular velocity (ω_peak) and times (t1, t2)
|
||||
var peak_angular_velocity = (2 * angle_to_turn * accel_angular_accel * decel_angular_accel) / (accel_angular_accel + decel_angular_accel)
|
||||
peak_angular_velocity = sqrt(abs(peak_angular_velocity)) * sign(angle_to_turn)
|
||||
|
||||
var accel_burn_time = abs(peak_angular_velocity / accel_angular_accel)
|
||||
var decel_burn_time = abs(peak_angular_velocity / decel_angular_accel)
|
||||
|
||||
var total_maneuver_time = accel_burn_time + decel_burn_time
|
||||
|
||||
if total_maneuver_time > time_window:
|
||||
print("AUTOPILOT WARNING: Maneuver is impossible in the given time window. Performing max-power turn.")
|
||||
# Fallback to a simple 50/50 burn if time is too short.
|
||||
accel_burn_time = time_window / 2.0
|
||||
decel_burn_time = time_window / 2.0
|
||||
|
||||
# No coast time in this simplified model, but it could be added back with more complex math.
|
||||
|
||||
print("AUTOPILOT: Asymmetrical Plan: Accel Burn %.2fs, Decel Burn %.2fs" % [accel_burn_time, decel_burn_time])
|
||||
|
||||
# --- Execute Maneuver ---
|
||||
|
||||
# ACCELERATION BURN
|
||||
var accel_timer = get_tree().create_timer(accel_burn_time)
|
||||
while accel_timer.get_time_left() > 0.0:
|
||||
apply_rotational_thrust(accel_torque * sign(angle_to_turn))
|
||||
await get_tree().physics_frame
|
||||
|
||||
# DECELERATION BURN
|
||||
print("AUTOPILOT: Acceleration complete, executing deceleration burn.")
|
||||
var decel_timer = get_tree().create_timer(decel_burn_time)
|
||||
while decel_timer.get_time_left() > 0.0:
|
||||
apply_rotational_thrust(-accel_torque * sign(angle_to_turn)) # Apply opposite torque
|
||||
await get_tree().physics_frame
|
||||
|
||||
shutdown_rcs()
|
||||
|
||||
print("AUTOPILOT: Rotation maneuver complete.")
|
||||
command_hold_attitude(new_target_rot)
|
||||
|
||||
|
||||
# --- MANUAL HOLD & STABILIZATION LOGIC (REFACTORED) ---
|
||||
func _perform_manual_hold():
|
||||
if not is_instance_valid(ship):
|
||||
rotation_mode = RotationMode.NONE # Safety check
|
||||
return
|
||||
|
||||
# 1. Calculate the error (how far we have to go).
|
||||
var error = shortest_angle_between(ship.rotation, target_rotation_rad)
|
||||
|
||||
# 2. Calculate the required torque using the PD formula.
|
||||
# This value will be positive, negative, or zero depending on our state.
|
||||
var desired_torque = (error * HOLD_KP) - (ship.angular_velocity * HOLD_KD)
|
||||
|
||||
# 3. Continuously command the thrusters based on the calculated torque.
|
||||
# This function will turn thrusters ON if they match the desired_torque's sign
|
||||
# and OFF if they do not. It must be called every frame to work correctly.
|
||||
if not _is_attitude_misaligned() and abs(ship.angular_velocity) < 0.01 and abs(desired_torque) < 0.0001:
|
||||
ship.angular_velocity = 0.0
|
||||
ship.rotation = target_rotation_rad
|
||||
|
||||
shutdown_rcs()
|
||||
else:
|
||||
apply_rotational_thrust(desired_torque)
|
||||
|
||||
|
||||
# --- WORKER FUNCTIONS ---
|
||||
|
||||
func apply_rotational_thrust(desired_torque: float):
|
||||
if not is_instance_valid(ship):
|
||||
return
|
||||
|
||||
var delta_torque = 0.0
|
||||
|
||||
# Iterate through all available RCS thrusters
|
||||
for thruster in rcs_thrusters:
|
||||
# ... (your existing calculation for produced_torque is correct)
|
||||
var thruster_local_pos = thruster.position
|
||||
var thruster_data: ThrusterData = thruster_data_map.get(thruster)
|
||||
thruster_data.measured_torque
|
||||
#var force_local_vec = thruster.thrust_direction * thruster.max_thrust
|
||||
#var produced_torque = thruster_local_pos.cross(force_local_vec)
|
||||
|
||||
# --- THE FIX ---
|
||||
# If this thruster can help, turn it on. Otherwise, explicitly turn it off.
|
||||
if sign(thruster_data.measured_torque) == sign(desired_torque) and desired_torque != 0:
|
||||
thruster.turn_on()
|
||||
delta_torque += thruster_data.measured_torque
|
||||
|
||||
else:
|
||||
thruster.turn_off()
|
||||
|
||||
current_applied_torque = delta_torque
|
||||
|
||||
## Applies forces from the correct thrusters to achieve a desired torque.
|
||||
#func apply_rotational_thrust(desired_torque: float):
|
||||
#if not is_instance_valid(ship):
|
||||
#return
|
||||
#
|
||||
##print("AUTOPILOT: Applying rotational thrust %f" % desired_torque)
|
||||
## Iterate through all available RCS thrusters
|
||||
#var delta_torque = 0.0
|
||||
#for thruster in rcs_thrusters:
|
||||
## 1. Get the thruster's position relative to the ship's center. This is its local position.
|
||||
#var thruster_local_pos = thruster.position
|
||||
#
|
||||
## 2. Calculate the force this thruster produces, also in LOCAL space.
|
||||
#var force_local_vec = thruster.thrust_direction * thruster.max_thrust
|
||||
#
|
||||
## 3. Calculate the torque in LOCAL space. This is now a valid calculation.
|
||||
#var produced_torque = thruster_local_pos.cross(force_local_vec)
|
||||
## 4. Decide whether to fire the thruster. This check will now work correctly.
|
||||
#if sign(produced_torque) == sign(desired_torque):
|
||||
#thruster.turn_on()
|
||||
#delta_torque += produced_torque
|
||||
#
|
||||
#else:
|
||||
#thruster.turn_off()
|
||||
#
|
||||
#current_applied_torque = delta_torque
|
||||
|
||||
|
||||
func shutdown_rcs():
|
||||
for thruster in rcs_thrusters: thruster.turn_off()
|
||||
current_applied_torque = 0.0
|
||||
|
||||
# Calculates the shortest angle between two angles (in radians).
|
||||
# The result will be between -PI and +PI. The sign indicates the direction.
|
||||
func shortest_angle_between(from_angle: float, to_angle: float) -> float:
|
||||
var difference = fposmod(to_angle - from_angle, TAU)
|
||||
if difference > PI:
|
||||
return difference - TAU
|
||||
else:
|
||||
return difference
|
||||
|
||||
# Calculates the total torque available from all thrusters for a given direction.
|
||||
func _get_total_possible_torque(direction: int) -> float:
|
||||
var total_torque: float = 0.0
|
||||
for thruster in rcs_thrusters:
|
||||
var r = thruster.position
|
||||
var force_local_vec = thruster.thrust_direction * thruster.max_thrust
|
||||
var produced_torque = r.cross(force_local_vec)
|
||||
if sign(produced_torque) == direction:
|
||||
total_torque += abs(produced_torque)
|
||||
return total_torque
|
||||
|
||||
# Fires all main engines for a specified duration.
|
||||
func _fire_main_engine(duration: float):
|
||||
print("AUTOPILOT: Firing main engine for %.2f seconds." % duration)
|
||||
|
||||
for engine in main_engines:
|
||||
engine.turn_on()
|
||||
|
||||
await get_tree().create_timer(duration).timeout
|
||||
|
||||
for engine in main_engines:
|
||||
engine.turn_off()
|
||||
|
||||
is_burning = false
|
||||
print("AUTOPILOT: Main engine burn complete.")
|
||||
|
||||
func main_engine_max_thrust():
|
||||
return main_engines.reduce(func(thrust, engine : Thruster): return thrust + engine.max_thrust, 0.0)
|
||||
@ -1 +0,0 @@
|
||||
uid://c0bx113ifxyh8
|
||||
@ -1,67 +0,0 @@
|
||||
class_name CelestialBody
|
||||
extends RigidBody2D
|
||||
|
||||
# The celestial body that this body orbits.
|
||||
@export var primary: CelestialBody
|
||||
|
||||
# This is a placeholder for your pixel art texture.
|
||||
@export var texture: Texture2D
|
||||
|
||||
# The radius of the body, used for drawing and future collision detection.
|
||||
@export var radius: float = 10.0
|
||||
|
||||
# Default color based on body type for visualization.
|
||||
var body_color: Color = Color.ORANGE_RED
|
||||
|
||||
var orbit_radius_real : float = 0.0
|
||||
|
||||
var direction_to_primary : Vector2 = Vector2.ZERO
|
||||
|
||||
func get_class_name() -> String:
|
||||
return "CelestialBody"
|
||||
|
||||
func _ready() -> void:
|
||||
# We will handle gravity manually, so we set the built-in gravity scale to 0.
|
||||
gravity_scale = 0.0
|
||||
|
||||
# To make the simulation work without drag, we must set linear damping to 0.
|
||||
linear_damp = 0.0
|
||||
angular_damp = 0.0
|
||||
|
||||
can_sleep = false
|
||||
|
||||
# Set the color based on the class name for easy differentiation.
|
||||
match get_class_name():
|
||||
"Star":
|
||||
body_color = Color.GOLD
|
||||
"Planet":
|
||||
body_color = Color.BLUE
|
||||
"Moon":
|
||||
body_color = Color.PURPLE
|
||||
"Station":
|
||||
body_color = Color.WHITE
|
||||
"Asteroid":
|
||||
body_color = Color.BROWN
|
||||
_:
|
||||
body_color = Color.ORANGE_RED
|
||||
|
||||
# This callback is the correct place to apply custom forces to a RigidBody2D.
|
||||
func _integrate_forces(state: PhysicsDirectBodyState2D) -> void:
|
||||
if primary and is_instance_valid(primary):
|
||||
var force = OrbitalMechanics.simple_n_body_grav(self, primary)
|
||||
state.apply_central_force(force)
|
||||
|
||||
# We force a redraw here to update the body's visual representation.
|
||||
queue_redraw()
|
||||
|
||||
# Override the default drawing function to draw the body.
|
||||
# This is useful for debugging and visualization.
|
||||
func _draw() -> void:
|
||||
if texture:
|
||||
# If a texture is assigned, draw it.
|
||||
var size = Vector2(radius * 2, radius * 2)
|
||||
var offset = -size / 2.0
|
||||
draw_texture_rect(texture, Rect2(offset, size), false)
|
||||
else:
|
||||
# Otherwise, draw a simple placeholder circle.
|
||||
draw_circle(Vector2.ZERO, radius, body_color)
|
||||
@ -1 +0,0 @@
|
||||
uid://bn1u2xood3vs6
|
||||
@ -1,100 +0,0 @@
|
||||
extends Node2D
|
||||
class_name OrbitalBody2D
|
||||
|
||||
# Mass of this individual component
|
||||
@export var base_mass: float = 1.0
|
||||
var mass: float = 0.0 # Aggregated mass of this body and all its OrbitalBody2D children
|
||||
var linear_velocity: Vector2 = Vector2.ZERO
|
||||
var angular_velocity: float = 0.0
|
||||
|
||||
# Variables to accumulate forces applied during the current physics frame
|
||||
var accumulated_force: Vector2 = Vector2.ZERO
|
||||
var accumulated_torque: float = 0.0
|
||||
|
||||
# Placeholder for Moment of Inertia.
|
||||
@export var inertia: float = 1.0
|
||||
|
||||
# Determine if this body is the root of a physics simulation
|
||||
var is_sim_root: bool = true
|
||||
|
||||
func _ready():
|
||||
# FIX 1: Ensure mass update runs immediately before the first _physics_process.
|
||||
_update_mass_and_inertia()
|
||||
|
||||
# Check if a parent is also an OrbitalBody2D
|
||||
var p = get_parent()
|
||||
while p:
|
||||
if p is OrbitalBody2D:
|
||||
is_sim_root = false
|
||||
break
|
||||
p = p.get_parent()
|
||||
|
||||
# FIX: Enable _physics_process for ALL OrbitalBody2D nodes (including Thrusters).
|
||||
# The 'if is_sim_root' inside _physics_process will prevent integration for children.
|
||||
set_physics_process(true)
|
||||
|
||||
# --- PUBLIC FORCE APPLICATION METHODS ---
|
||||
# This method is called by a component (like Thruster) at its global position.
|
||||
func apply_force(force: Vector2, position: Vector2 = Vector2.ZERO):
|
||||
# This is the force routing logic.
|
||||
if is_sim_root:
|
||||
# If we are the root, accumulate the force and calculate torque on the total body.
|
||||
accumulated_force += force
|
||||
|
||||
# Calculate torque (2D cross product: T = r x F = r.x * F.y - r.y * F.x)
|
||||
# 'r' is the vector from the center of mass (global_position) to the point of force application (position).
|
||||
var r = position - global_position
|
||||
var torque = r.x * force.y - r.y * force.x
|
||||
accumulated_torque += torque
|
||||
else:
|
||||
# If we are not the root, we must route the force to the next OrbitalBody2D parent.
|
||||
var p = get_parent()
|
||||
while p:
|
||||
if p is OrbitalBody2D:
|
||||
# Recursively call the parent's apply_force method.
|
||||
# This sends the force (and its original global position) up the chain.
|
||||
p.apply_force(force, position)
|
||||
return # Stop at the first OrbitalBody2D parent
|
||||
p = p.get_parent()
|
||||
|
||||
push_error("OrbitalBody2D tried to apply force but could not find a parent OrbitalBody2D.")
|
||||
|
||||
func _update_mass_and_inertia():
|
||||
mass = base_mass
|
||||
for child in get_children():
|
||||
if child is OrbitalBody2D:
|
||||
child._update_mass_and_inertia() # Recurse into children
|
||||
mass += child.mass
|
||||
|
||||
print("Node: %s, Mass: %f" % [self, mass])
|
||||
|
||||
func _physics_process(delta):
|
||||
if is_sim_root:
|
||||
|
||||
# FIX 2: Safety Check for Division by Zero
|
||||
var sim_mass = mass
|
||||
if sim_mass <= 0.0:
|
||||
# If mass is zero, stop all physics to prevent NaN explosion.
|
||||
accumulated_force = Vector2.ZERO
|
||||
accumulated_torque = 0.0
|
||||
return
|
||||
|
||||
# 1. Calculate and accumulate gravitational force (F_g)
|
||||
var total_gravity_force = OrbitalMechanics.calculate_n_body_gravity_forces(self)
|
||||
|
||||
# 2. Total all forces: F_total = F_g + F_accumulated_from_thrusters
|
||||
var total_force = total_gravity_force + accumulated_force
|
||||
|
||||
# 3. Apply Linear Physics (F = ma)
|
||||
var linear_acceleration = total_force / sim_mass # Division is now safe
|
||||
linear_velocity += linear_acceleration * delta
|
||||
global_position += linear_velocity * delta
|
||||
|
||||
# 4. Apply Rotational Physics (T = I * angular_acceleration)
|
||||
var angular_acceleration = accumulated_torque / inertia
|
||||
angular_velocity += angular_acceleration * delta
|
||||
rotation += angular_velocity * delta
|
||||
|
||||
# 5. Reset accumulated forces for the next frame
|
||||
accumulated_force = Vector2.ZERO
|
||||
accumulated_torque = 0.0
|
||||
@ -1 +0,0 @@
|
||||
uid://0isnsk356que
|
||||
@ -1,49 +0,0 @@
|
||||
# GameManager.gd
|
||||
extends Node
|
||||
|
||||
# This variable will hold the reference to the currently active star system.
|
||||
var current_star_system : StarSystemGenerator = null
|
||||
var ships_in_system : Array[OrbitalBody2D]
|
||||
|
||||
# Any scene that generates a star system will call this function to register itself.
|
||||
func register_star_system(system_node):
|
||||
current_star_system = system_node
|
||||
print("GameManager: Star system registered.")
|
||||
|
||||
func register_ship(ship: Node2D):
|
||||
if not ships_in_system.has(ship):
|
||||
ships_in_system.append(ship)
|
||||
|
||||
# A helper function for easily accessing the system's data.
|
||||
func get_system_data():
|
||||
if current_star_system:
|
||||
return current_star_system.get_system_data()
|
||||
return null
|
||||
|
||||
func get_system_bodies() -> Array[CelestialBody]:
|
||||
if current_star_system:
|
||||
return current_star_system.get_all_bodies()
|
||||
|
||||
return []
|
||||
|
||||
func get_all_trackable_bodies() -> Array:
|
||||
var all_bodies: Array = []
|
||||
if current_star_system:
|
||||
# First, get all the celestial bodies (planets, moons, etc.)
|
||||
var system_data = current_star_system.get_system_data()
|
||||
if system_data:
|
||||
all_bodies.append_array(system_data.all_bodies())
|
||||
|
||||
# Next, add all registered ships to the list.
|
||||
all_bodies.append_array(ships_in_system)
|
||||
|
||||
return all_bodies
|
||||
|
||||
# Traverses up the scene tree to find the first parent that is a Spaceship.
|
||||
func _find_parent_ship(node: Node) -> Spaceship:
|
||||
var current_node = node.get_parent()
|
||||
while is_instance_valid(current_node):
|
||||
if current_node is Spaceship:
|
||||
return current_node
|
||||
current_node = current_node.get_parent()
|
||||
return null # Return null if no spaceship parent was found
|
||||
@ -1,166 +0,0 @@
|
||||
# OrbitalMechanics.gd
|
||||
extends Node
|
||||
|
||||
# This singleton holds all universal physics constants and functions.
|
||||
|
||||
# The scaled gravitational constant for the entire simulation.
|
||||
const G = 10.0 # Adjust this to control the "speed" of your simulation
|
||||
|
||||
func calculate_n_body_gravity_forces(body_to_affect: Node2D) -> Vector2:
|
||||
var total_force = Vector2.ZERO
|
||||
if not is_instance_valid(body_to_affect):
|
||||
return total_force
|
||||
|
||||
# Get the list of all major gravitational bodies from the GameManager.
|
||||
var system_data = GameManager.get_system_data()
|
||||
if not system_data:
|
||||
return total_force
|
||||
|
||||
# We only consider planets and the star as major attractors for performance.
|
||||
var attractors = system_data.all_bodies()
|
||||
|
||||
for attractor in attractors:
|
||||
if is_instance_valid(attractor) and attractor != body_to_affect:
|
||||
total_force += calculate_gravitational_force(body_to_affect, attractor)
|
||||
|
||||
return total_force
|
||||
|
||||
# Calculates the force of gravity exerted by a primary on an orbiter.
|
||||
func calculate_gravitational_force(orbiter: Node2D, primary: RigidBody2D) -> Vector2:
|
||||
if not is_instance_valid(orbiter) or not is_instance_valid(primary):
|
||||
return Vector2.ZERO
|
||||
|
||||
var direction = orbiter.global_position.direction_to(primary.global_position)
|
||||
var distance_sq = orbiter.global_position.distance_squared_to(primary.global_position)
|
||||
|
||||
if distance_sq < 1.0: # Avoid division by zero
|
||||
return Vector2.ZERO
|
||||
|
||||
var force_magnitude = (G * primary.mass * orbiter.mass) / distance_sq
|
||||
return direction * force_magnitude
|
||||
|
||||
# Simplified n-body gravitational pull on orbiters.
|
||||
# Station orbiting a moon will for instance calculate forces to the moon, the planet, and the star.
|
||||
func simple_n_body_grav(primary: RigidBody2D, orbiter : RigidBody2D) -> Vector2:
|
||||
var pull = calculate_gravitational_force(primary, orbiter)
|
||||
var inner_primary : CelestialBody = primary
|
||||
|
||||
while (inner_primary.primary is CelestialBody):
|
||||
pull = pull + calculate_gravitational_force(inner_primary.primary, orbiter)
|
||||
inner_primary = inner_primary.primary
|
||||
|
||||
return pull
|
||||
|
||||
# Calculates the perfect initial velocity for a stable circular orbit.
|
||||
func calculate_circular_orbit_velocity(orbiter: Node2D, primary: RigidBody2D) -> Vector2:
|
||||
if not is_instance_valid(primary):
|
||||
return Vector2.ZERO
|
||||
|
||||
var distance = orbiter.global_position.distance_to(primary.global_position)
|
||||
if distance == 0:
|
||||
return Vector2.ZERO
|
||||
|
||||
# v = sqrt(G * M / r)
|
||||
var speed_magnitude = sqrt(G * primary.mass / distance)
|
||||
|
||||
var direction_to_orbiter = primary.global_position.direction_to(orbiter.global_position)
|
||||
var perpendicular_direction = Vector2(direction_to_orbiter.y, -direction_to_orbiter.x)
|
||||
|
||||
# The final velocity must include the primary's own velocity.
|
||||
return (perpendicular_direction * speed_magnitude) + primary.linear_velocity
|
||||
|
||||
func _calculate_n_body_orbital_path(body_to_trace: OrbitalBody2D) -> PackedVector2Array:
|
||||
var num_steps = 10
|
||||
var time_step = 60
|
||||
|
||||
var ghost_position = body_to_trace.global_position
|
||||
var ghost_velocity = body_to_trace.linear_velocity
|
||||
|
||||
var path_points = PackedVector2Array()
|
||||
|
||||
for i in range(num_steps):
|
||||
# Create a temporary "ghost" body to calculate forces on.
|
||||
var ghost_body = OrbitalBody2D.new()
|
||||
ghost_body.global_position = ghost_position
|
||||
ghost_body.mass = body_to_trace.mass
|
||||
|
||||
# Use our library to get the total gravitational force at the ghost's position.
|
||||
var total_force = calculate_n_body_gravity_forces(ghost_body)
|
||||
var acceleration = total_force / ghost_body.mass
|
||||
|
||||
ghost_velocity += acceleration * time_step
|
||||
ghost_position += ghost_velocity * time_step
|
||||
path_points.append(ghost_position)
|
||||
|
||||
ghost_body.free() # Clean up the temporary node
|
||||
|
||||
return path_points
|
||||
|
||||
# Calculates an array of points for the orbit RELATIVE to the primary body.
|
||||
func _calculate_relative_orbital_path(body_to_trace: CelestialBody) -> PackedVector2Array:
|
||||
if not is_instance_valid(body_to_trace) or not is_instance_valid(body_to_trace.primary):
|
||||
return PackedVector2Array()
|
||||
|
||||
# --- Initial State ---
|
||||
var primary = body_to_trace.primary
|
||||
var primary_mass = primary.mass
|
||||
var body_mass = body_to_trace.mass
|
||||
|
||||
# The position of the body relative to its parent.
|
||||
var ghost_relative_pos = body_to_trace.global_position - primary.global_position
|
||||
# The velocity of the body relative to its parent's velocity.
|
||||
var ghost_relative_vel = body_to_trace.linear_velocity - primary.linear_velocity
|
||||
|
||||
# --- NEW: Dynamically Calculate Simulation Time from Orbital Period ---
|
||||
var r_magnitude = ghost_relative_pos.length()
|
||||
if r_magnitude == 0:
|
||||
return PackedVector2Array()
|
||||
|
||||
var v_sq = ghost_relative_vel.length_squared()
|
||||
var mu = OrbitalMechanics.G * primary_mass # Standard Gravitational Parameter
|
||||
|
||||
# 1. Calculate the specific orbital energy. Negative energy means it's a stable orbit.
|
||||
var specific_energy = v_sq / 2.0 - mu / r_magnitude
|
||||
|
||||
# --- Simulation Parameters ---
|
||||
var num_steps = 200 # The desired number of points for the orbit line's smoothness.
|
||||
var time_step: float # The duration of each step, which we will now calculate.
|
||||
|
||||
if specific_energy >= 0:
|
||||
# Escape trajectory (parabolic or hyperbolic). The period is infinite.
|
||||
# We'll just draw a segment of its path using a fixed time_step.
|
||||
time_step = 0.1
|
||||
else:
|
||||
# Stable elliptical orbit.
|
||||
# 2. Calculate the semi-major axis from the energy.
|
||||
var semi_major_axis = -mu / (2.0 * specific_energy)
|
||||
|
||||
# 3. Calculate the orbital period using Kepler's Third Law: T = 2π * sqrt(a³/μ)
|
||||
var orbital_period = 2.0 * PI * sqrt(pow(semi_major_axis, 3) / mu)
|
||||
|
||||
# 4. Calculate the time_step needed to complete one period in num_steps.
|
||||
time_step = orbital_period / float(num_steps)
|
||||
|
||||
var path_points = PackedVector2Array()
|
||||
|
||||
for i in range(num_steps):
|
||||
# --- Physics Calculation (Primary is now at the origin (0,0)) ---
|
||||
var distance_sq = ghost_relative_pos.length_squared()
|
||||
|
||||
if distance_sq < 1.0:
|
||||
break
|
||||
|
||||
# Direction is simply towards the origin.
|
||||
var direction = -ghost_relative_pos.normalized()
|
||||
var force_magnitude = (G * primary_mass * body_mass) / distance_sq
|
||||
var force_vector = direction * force_magnitude
|
||||
|
||||
var acceleration = force_vector / body_mass
|
||||
|
||||
# --- Integration (Update ghost's relative state) ---
|
||||
ghost_relative_vel += acceleration * time_step
|
||||
ghost_relative_pos += ghost_relative_vel * time_step
|
||||
|
||||
path_points.append(ghost_relative_pos)
|
||||
|
||||
return path_points
|
||||
@ -1,11 +0,0 @@
|
||||
extends Node
|
||||
|
||||
# Signal emitted when the player requests to toggle the map view.
|
||||
signal map_mode_toggled
|
||||
|
||||
# Signal emitted from the map when a body is selected to be followed.
|
||||
# It passes the selected CelestialBody as an argument.
|
||||
signal follow_target_selected(body: CelestialBody)
|
||||
|
||||
# Emitted by the NavComputer to command a timed rotation.
|
||||
signal rotation_maneuver_planned(target_rotation_rad: float, time_window_seconds: float)
|
||||
@ -1 +0,0 @@
|
||||
uid://duu8vu31yyt7r
|
||||
@ -1,342 +0,0 @@
|
||||
class_name StarSystemGenerator
|
||||
extends Node2D
|
||||
|
||||
@export_group("System Generation")
|
||||
# Minimum and maximum number of planets to generate.
|
||||
@export var min_planets: int = 2
|
||||
@export var max_planets: int = 7
|
||||
|
||||
# Minimum and maximum number of moons to generate per planet.
|
||||
@export var min_moons: int = 0
|
||||
@export var max_moons: int = 4
|
||||
|
||||
# Minimum and maximum number of asteroid belts to generate.
|
||||
@export var min_asteroid_belts: int = 1
|
||||
@export var max_asteroid_belts: int = 3
|
||||
|
||||
# Minimum and maximum number of asteroids per belt.
|
||||
@export var min_asteroids_per_belt: int = 20
|
||||
@export var max_asteroids_per_belt: int = 100
|
||||
|
||||
# Minimum and maximum number of star-orbiting stations.
|
||||
@export var min_star_stations: int = 0
|
||||
@export var max_star_stations: int = 2
|
||||
|
||||
@export var min_planetary_stations : int = 0
|
||||
@export var max_planetary_stations: int = 2
|
||||
|
||||
@export var min_moon_stations : int = 0
|
||||
@export var max_moon_stations: int = 1
|
||||
|
||||
# References to the PackedScene resources for each celestial body.
|
||||
@export var star_scene: PackedScene
|
||||
@export var planet_scene: PackedScene
|
||||
@export var moon_scene: PackedScene
|
||||
@export var station_scene: PackedScene
|
||||
@export var asteroid_scene: PackedScene
|
||||
@export var spaceship_scene: PackedScene
|
||||
|
||||
# A factor to scale the initial orbital distances to make the system visually compelling.
|
||||
@export var min_ring_distance: float = 10000
|
||||
@export var min_planetary_orbit_radius : float = 200
|
||||
|
||||
# A factor to determine the buffer between orbits based on mass.
|
||||
@export var orbit_buffer_factor: float = 1
|
||||
const orbit_buffer_constant : float = 1000
|
||||
var orbit_buffer : float = orbit_buffer_constant * orbit_buffer_factor
|
||||
|
||||
# A flag to check if the system has been generated.
|
||||
var has_generated: bool = false
|
||||
|
||||
# Constants for real-world physics calculations.
|
||||
#const G = 6.67430e-11 # Gravitational constant (N·m²/kg²)
|
||||
#const SUN_MASS = 1.989e30 # Mass of the sun (kg)
|
||||
const SUN_MASS = 10000000
|
||||
const PLANETARY_MASS = SUN_MASS / 300000
|
||||
const MOON_MASS = PLANETARY_MASS / 100
|
||||
const ASTEROID_MASS = MOON_MASS / 5
|
||||
const STATION_MASS = MOON_MASS / 1000
|
||||
|
||||
var system_data : SystemData
|
||||
|
||||
func _ready() -> void:
|
||||
if not has_generated:
|
||||
system_data = SystemData.new()
|
||||
generate_star_system()
|
||||
has_generated = true
|
||||
|
||||
# The main function to generate the entire star system.
|
||||
func generate_star_system() -> void:
|
||||
# Create the star at the center of the system.
|
||||
var star_instance = _create_star()
|
||||
|
||||
add_child(star_instance)
|
||||
|
||||
# Generate and place all celestial bodies in randomized order.
|
||||
_generate_and_place_bodies(star_instance)
|
||||
|
||||
# Creates a single star instance.
|
||||
func _create_star() -> RigidBody2D:
|
||||
var star_instance = star_scene.instantiate() as Star
|
||||
system_data.star = star_instance
|
||||
star_instance.name = "Star"
|
||||
|
||||
# Set the star's properties.
|
||||
star_instance.orbit_radius_real = 0.0
|
||||
star_instance.mass = SUN_MASS
|
||||
star_instance.modulate = Color("ffe066") # Yellow
|
||||
|
||||
return star_instance
|
||||
|
||||
# Generates and places all bodies in randomized order.
|
||||
func _generate_and_place_bodies(primary: RigidBody2D) -> void:
|
||||
# 1. Randomize the number of each type of body.
|
||||
var num_planets = randi_range(min_planets, max_planets)
|
||||
var num_belts = randi_range(min_asteroid_belts, max_asteroid_belts)
|
||||
var num_star_stations = randi_range(min_star_stations, max_star_stations)
|
||||
|
||||
# 2. Create an "inventory" of bodies to be placed.
|
||||
var bodies_to_place = []
|
||||
bodies_to_place.append({"type": "wormhole_exit", "num": 0})
|
||||
for i in range(num_planets):
|
||||
bodies_to_place.append({"type": "planet"})
|
||||
for i in range(num_belts):
|
||||
bodies_to_place.append({"type": "asteroid_belt"})
|
||||
for i in range(num_star_stations):
|
||||
bodies_to_place.append({"type": "station"})
|
||||
|
||||
# 3. Randomize the order of placement.
|
||||
bodies_to_place.shuffle()
|
||||
|
||||
var current_orbit_radius = min_ring_distance
|
||||
|
||||
# 4. Place bodies sequentially based on the randomized order.
|
||||
for body_data in bodies_to_place:
|
||||
var body_type = body_data["type"]
|
||||
|
||||
match body_type:
|
||||
"planet":
|
||||
var planet_instance = planet_scene.instantiate() as CelestialBody
|
||||
system_data.planets.append(planet_instance)
|
||||
planet_instance.name = "Planet " + str(current_orbit_radius)
|
||||
planet_instance.primary = primary
|
||||
planet_instance.mass = PLANETARY_MASS # randf_range(1e24, 1e25)
|
||||
|
||||
# Calculate orbit based on the last placed body.
|
||||
planet_instance.orbit_radius_real = current_orbit_radius + (planet_instance.mass * orbit_buffer)
|
||||
|
||||
_create_body_in_ring(primary, planet_instance)
|
||||
_create_moons_and_stations(planet_instance)
|
||||
|
||||
current_orbit_radius = planet_instance.orbit_radius_real + (planet_instance.mass * orbit_buffer)
|
||||
|
||||
"asteroid_belt":
|
||||
var belt = _create_asteroid_belt(primary, current_orbit_radius)
|
||||
system_data.belts.append(belt)
|
||||
|
||||
current_orbit_radius = current_orbit_radius + (belt.mass * orbit_buffer) * 2
|
||||
|
||||
"station":
|
||||
var station_instance = station_scene.instantiate() as CelestialBody
|
||||
system_data.stations.append(station_instance)
|
||||
station_instance.name = "Star Station " + str(current_orbit_radius)
|
||||
station_instance.primary = primary
|
||||
station_instance.mass = STATION_MASS # A very small mass
|
||||
|
||||
station_instance.orbit_radius_real = current_orbit_radius + (station_instance.mass * orbit_buffer)
|
||||
|
||||
_create_body_in_ring(primary, station_instance)
|
||||
|
||||
current_orbit_radius = station_instance.orbit_radius_real + (station_instance.mass * orbit_buffer)
|
||||
"wormhole_exit":
|
||||
if not spaceship_scene:
|
||||
print("Spaceship scene not set in StarSystemGenerator!")
|
||||
continue
|
||||
|
||||
print("Spawning spaceship...")
|
||||
var spaceship_instance = spaceship_scene.instantiate() as Spaceship
|
||||
|
||||
# 3. Position it in a stable orbit
|
||||
var orbit_radius = current_orbit_radius + (spaceship_instance.mass * orbit_buffer)
|
||||
var initial_position_vector = Vector2(orbit_radius, 0).rotated(randf() * TAU)
|
||||
spaceship_instance.global_position = primary.global_position + initial_position_vector
|
||||
|
||||
# 4. Use the OrbitalMechanics library to calculate its initial velocity
|
||||
spaceship_instance.linear_velocity = OrbitalMechanics.calculate_circular_orbit_velocity(spaceship_instance, primary)
|
||||
|
||||
add_child(spaceship_instance)
|
||||
|
||||
current_orbit_radius = orbit_radius + (spaceship_instance.mass * orbit_buffer)
|
||||
|
||||
print("Star system generation complete.")
|
||||
|
||||
GameManager.register_star_system(self)
|
||||
# Creates moons and stations around a primary body.
|
||||
func _create_moons_and_stations(primary: RigidBody2D) -> void:
|
||||
var num_moons = randi_range(min_moons, max_moons)
|
||||
var num_planetary_stations = randi_range(min_planetary_stations, max_planetary_stations)
|
||||
|
||||
# Start with a base orbital radius around the parent planet.
|
||||
var next_local_orbit_radius = min_planetary_orbit_radius
|
||||
|
||||
# Create an "inventory" of bodies to be placed.
|
||||
var bodies_to_place = []
|
||||
for i in range(num_planetary_stations):
|
||||
bodies_to_place.append({"type": "station", "num": i})
|
||||
for i in range(num_moons):
|
||||
bodies_to_place.append({"type": "moon", "num": i})
|
||||
|
||||
# Randomize the order of placement.
|
||||
bodies_to_place.shuffle()
|
||||
|
||||
for body in bodies_to_place:
|
||||
match body.type:
|
||||
"station":
|
||||
var station_instance = station_scene.instantiate() as CelestialBody
|
||||
system_data.stations.append(station_instance)
|
||||
station_instance.name = "Station " + str(body.num + 1)
|
||||
station_instance.primary = primary
|
||||
station_instance.mass = STATION_MASS
|
||||
|
||||
# Use the local orbit radius for this station.
|
||||
station_instance.orbit_radius_real = next_local_orbit_radius
|
||||
_create_body_in_ring(primary, station_instance)
|
||||
|
||||
# Increment the *local* orbit radius for the next body.
|
||||
next_local_orbit_radius += randf_range(40, 100)
|
||||
|
||||
"moon":
|
||||
var moon_instance = moon_scene.instantiate() as CelestialBody
|
||||
system_data.moons.append(moon_instance)
|
||||
moon_instance.name = "Moon " + str(body.num + 1)
|
||||
moon_instance.primary = primary
|
||||
moon_instance.mass = MOON_MASS
|
||||
|
||||
# Use the local orbit radius for this moon.
|
||||
moon_instance.orbit_radius_real = next_local_orbit_radius
|
||||
_create_body_in_ring(primary, moon_instance)
|
||||
|
||||
# Increment the *local* orbit radius for the next body.
|
||||
next_local_orbit_radius += randf_range(40, 100)
|
||||
|
||||
# --- FIX for stations orbiting moons ---
|
||||
var num_moon_stations = randi_range(min_moon_stations, max_moon_stations)
|
||||
var next_moon_station_orbit = randf_range(20, 50) # Start closer for moon stations
|
||||
|
||||
for i in range(num_moon_stations):
|
||||
var station_instance = station_scene.instantiate() as CelestialBody
|
||||
system_data.stations.append(station_instance)
|
||||
station_instance.name = "Station " + str(i + 1)
|
||||
station_instance.primary = moon_instance
|
||||
station_instance.mass = STATION_MASS
|
||||
|
||||
# Set the orbit relative to the moon.
|
||||
station_instance.orbit_radius_real = next_moon_station_orbit
|
||||
_create_body_in_ring(moon_instance, station_instance)
|
||||
|
||||
# Increment for the next station around this *same* moon.
|
||||
next_moon_station_orbit += randf_range(20, 50)
|
||||
|
||||
#var num_moon_stations = randi_range(min_moon_stations, max_moon_stations)
|
||||
#
|
||||
#var moon_inner_orbit = randf_range(2, 5)
|
||||
#
|
||||
#for i in range(num_moon_stations):
|
||||
## Generate a space station.
|
||||
#var station_instance = station_scene.instantiate() as CelestialBody
|
||||
#system_data.stations.append(station_instance)
|
||||
#station_instance.name = "Station " + str(i + 1)
|
||||
#station_instance.primary = moon_instance
|
||||
#station_instance.mass = STATION_MASS
|
||||
#station_instance.orbit_radius_real = moon_inner_orbit
|
||||
#_create_body_in_ring(moon_instance, station_instance)
|
||||
#
|
||||
#moon_inner_orbit = moon_inner_orbit + randf_range(2, 5)
|
||||
|
||||
|
||||
# Creates a single asteroid belt.
|
||||
func _create_asteroid_belt(primary: RigidBody2D, initial_offset: float) -> AsteroidBelt:
|
||||
var num_asteroids = randi_range(min_asteroids_per_belt, max_asteroids_per_belt)
|
||||
var belt = AsteroidBelt.new()
|
||||
|
||||
for i in range(num_asteroids):
|
||||
var asteroid_instance = asteroid_scene.instantiate() as CelestialBody
|
||||
asteroid_instance.name = "Asteroid " + str(i + 1)
|
||||
asteroid_instance.primary = primary
|
||||
asteroid_instance.mass = ASTEROID_MASS # randf_range(1e10, 1e23)
|
||||
|
||||
belt.asteroids.append(asteroid_instance)
|
||||
|
||||
belt.mass = belt.asteroids.reduce(func(accum, asteroid : CelestialBody): return accum + asteroid.mass, 0.0)
|
||||
var offset = belt.mass * orbit_buffer
|
||||
belt.centered_radius = initial_offset + offset
|
||||
|
||||
for asteroid in belt.asteroids:
|
||||
# Asteroids within a belt have a random orbit radius within a certain range.
|
||||
asteroid.orbit_radius_real = belt.centered_radius + randf_range(-offset / 2, offset / 2)
|
||||
|
||||
_create_body_in_ring(primary, asteroid)
|
||||
|
||||
return belt
|
||||
|
||||
# Helper function to instantiate and place a body in a ring.
|
||||
func _create_body_in_ring(primary: CelestialBody, body_instance: CelestialBody) -> void:
|
||||
# 1. Parent the new body to its primary FIRST.
|
||||
# This establishes the correct local coordinate space.
|
||||
primary.add_child(body_instance)
|
||||
|
||||
# 2. Calculate the position vector relative to the parent.
|
||||
var initial_position_vector = Vector2(body_instance.orbit_radius_real, 0).rotated(randf() * TAU)
|
||||
|
||||
# 3. Set the LOCAL position of the body.
|
||||
# Godot will now correctly calculate its global_position based on the parent's position.
|
||||
body_instance.position = initial_position_vector
|
||||
|
||||
# 4. Now that the global position is correct, calculate the velocity for a stable orbit.
|
||||
# This part remains the same, as physics calculations need the final global positions.
|
||||
body_instance.linear_velocity = OrbitalMechanics.calculate_circular_orbit_velocity(body_instance, primary)
|
||||
|
||||
print("Created " + body_instance.name + " with radius " + str(body_instance.orbit_radius_real) + " and mass " + str(body_instance.mass))
|
||||
print("Initial orbital velocity is: " + str(body_instance.linear_velocity))
|
||||
|
||||
# Recursively finds all celestial bodies in the scene.
|
||||
func get_all_bodies() -> Array:
|
||||
var bodies = []
|
||||
for child in get_children():
|
||||
if child is CelestialBody:
|
||||
bodies.append(child)
|
||||
# Recursively add children if they are also celestial bodies.
|
||||
for sub_child in child.get_children():
|
||||
if sub_child is CelestialBody:
|
||||
bodies.append(sub_child)
|
||||
return bodies
|
||||
|
||||
func get_system_data() -> SystemData:
|
||||
return system_data
|
||||
|
||||
class AsteroidBelt:
|
||||
var width : float
|
||||
var mass : float
|
||||
var centered_radius : float = 0.0
|
||||
var asteroids : Array[CelestialBody]
|
||||
|
||||
class SystemData:
|
||||
var star : CelestialBody
|
||||
var planets : Array[CelestialBody]
|
||||
var moons: Array[CelestialBody]
|
||||
var stations : Array[CelestialBody]
|
||||
var belts : Array[AsteroidBelt]
|
||||
|
||||
func all_bodies() -> Array[CelestialBody]:
|
||||
var bodies : Array[CelestialBody] = [star]
|
||||
bodies.append_array(planets)
|
||||
bodies.append_array(stations)
|
||||
|
||||
bodies.append_array(moons)
|
||||
|
||||
var all_asteroids : Array[CelestialBody] = []
|
||||
for belt in belts:
|
||||
all_asteroids.append_array(belt.asteroids)
|
||||
|
||||
bodies.append_array(all_asteroids)
|
||||
return bodies
|
||||
@ -28,14 +28,25 @@ var save_button: Button
|
||||
var builder_scene_root: Node2D
|
||||
var builder_camera: Camera2D
|
||||
|
||||
# --- State Management Enum ---
|
||||
enum BuilderState {
|
||||
IDLE,
|
||||
PLACING_STRUCTURAL,
|
||||
PLACING_COMPONENT,
|
||||
WIRING # For future use
|
||||
}
|
||||
var current_state: BuilderState = BuilderState.IDLE
|
||||
|
||||
# --- State Variables ---
|
||||
var preview_piece: StructuralPiece = null
|
||||
var active_piece_scene: PackedScene = null
|
||||
var preview_node = null # Can be either StructuralPiece or Component
|
||||
var active_scene: PackedScene = null # Can be either StructuralPiece or Component
|
||||
var rotation_angle: float = 0.0
|
||||
var grid_size: float = 50.0
|
||||
|
||||
var undo_redo: EditorUndoRedoManager
|
||||
|
||||
# --- Most of the setup functions remain the same ---
|
||||
|
||||
func _enter_tree():
|
||||
main_screen = MAIN_EDITOR_SCENE.instantiate()
|
||||
EditorInterface.get_editor_main_screen().add_child(main_screen)
|
||||
@ -54,6 +65,9 @@ func _enter_tree():
|
||||
_setup_button_connections()
|
||||
_update_ui_labels()
|
||||
|
||||
# Add the Tool Menu Item
|
||||
add_tool_menu_item("Generate Structure Definitions", _on_generate_structures_pressed)
|
||||
|
||||
main_screen.hide()
|
||||
|
||||
undo_redo = EditorInterface.get_editor_undo_redo()
|
||||
@ -87,13 +101,11 @@ func _setup_docks():
|
||||
add_control_to_dock(DOCK_SLOT_RIGHT_UL, construction_inspector_dock)
|
||||
|
||||
func switch_to_dock_tab(dock_control: Control, tab_name: String):
|
||||
# Find the TabContainer within the dock's control node.
|
||||
var tab_container = dock_control.find_child("TabContainer")
|
||||
if not is_instance_valid(tab_container):
|
||||
print("Error: TabContainer not found in dock control.")
|
||||
return
|
||||
|
||||
# Iterate through the tabs to find the one with the correct name.
|
||||
for i in range(tab_container.get_tab_count()):
|
||||
if tab_container.get_tab_title(i) == tab_name:
|
||||
tab_container.current_tab = i
|
||||
@ -119,6 +131,9 @@ func _exit_tree():
|
||||
if main_screen:
|
||||
main_screen.queue_free()
|
||||
|
||||
# Clean up the menu item
|
||||
remove_tool_menu_item("Generate Structure Definitions")
|
||||
|
||||
func _has_main_screen() -> bool:
|
||||
return true
|
||||
|
||||
@ -159,7 +174,7 @@ func _update_ui_labels():
|
||||
func _process(_delta):
|
||||
_update_ui_labels()
|
||||
_refresh_tree_display()
|
||||
|
||||
|
||||
func _on_viewport_input(event: InputEvent) -> void:
|
||||
if event is InputEventMouseMotion and event.button_mask & MOUSE_BUTTON_MASK_RIGHT:
|
||||
builder_camera.position -= event.relative / builder_camera.zoom
|
||||
@ -168,56 +183,97 @@ func _on_viewport_input(event: InputEvent) -> void:
|
||||
builder_camera.zoom *= 1.1
|
||||
elif event is InputEventMouseButton and event.button_index == MOUSE_BUTTON_WHEEL_DOWN:
|
||||
builder_camera.zoom /= 1.1
|
||||
|
||||
if event is InputEventMouseButton and event.button_index == MOUSE_BUTTON_RIGHT and event.is_pressed():
|
||||
if is_instance_valid(preview_piece):
|
||||
on_clear_preview_piece()
|
||||
else:
|
||||
_remove_piece_under_mouse()
|
||||
|
||||
|
||||
if event is InputEventMouseMotion:
|
||||
_update_preview_position()
|
||||
|
||||
if event is InputEventMouseButton and event.button_index == MOUSE_BUTTON_LEFT and event.is_pressed():
|
||||
_place_piece_from_preview()
|
||||
match current_state:
|
||||
BuilderState.IDLE:
|
||||
if event is InputEventMouseButton and event.button_index == MOUSE_BUTTON_RIGHT and event.is_pressed():
|
||||
_remove_piece_under_mouse()
|
||||
|
||||
BuilderState.PLACING_STRUCTURAL:
|
||||
if event is InputEventMouseButton and event.button_index == MOUSE_BUTTON_LEFT and event.is_pressed():
|
||||
_place_piece_from_preview()
|
||||
if event is InputEventMouseButton and event.button_index == MOUSE_BUTTON_RIGHT and event.is_pressed():
|
||||
on_clear_preview()
|
||||
|
||||
BuilderState.PLACING_COMPONENT:
|
||||
if event is InputEventMouseButton and event.button_index == MOUSE_BUTTON_LEFT and event.is_pressed():
|
||||
_place_component_from_preview()
|
||||
if event is InputEventMouseButton and event.button_index == MOUSE_BUTTON_RIGHT and event.is_pressed():
|
||||
on_clear_preview()
|
||||
|
||||
BuilderState.WIRING:
|
||||
pass
|
||||
|
||||
|
||||
func _unhandled_key_input(event: InputEvent):
|
||||
if not event.is_pressed(): return
|
||||
if event is InputEventKey and event.as_text() == "R":
|
||||
if event is InputEventKey and event.as_text().to_lower() == "r":
|
||||
_on_rotate_button_pressed()
|
||||
get_tree().set_input_as_handled()
|
||||
|
||||
|
||||
func on_active_piece_set(scene: PackedScene):
|
||||
if is_instance_valid(preview_piece):
|
||||
preview_piece.queue_free()
|
||||
if is_instance_valid(preview_node):
|
||||
preview_node.queue_free()
|
||||
|
||||
active_piece_scene = scene
|
||||
preview_piece = scene.instantiate() as StructuralPiece
|
||||
preview_piece.is_preview = true
|
||||
builder_scene_root.add_child(preview_piece)
|
||||
current_state = BuilderState.PLACING_STRUCTURAL
|
||||
active_scene = scene
|
||||
preview_node = scene.instantiate() as StructuralPiece
|
||||
preview_node.is_preview = true
|
||||
builder_scene_root.add_child(preview_node)
|
||||
_update_preview_position()
|
||||
|
||||
func on_clear_preview_piece():
|
||||
if is_instance_valid(preview_piece):
|
||||
preview_piece.queue_free()
|
||||
preview_piece = null
|
||||
active_piece_scene = null
|
||||
func _on_component_selected(component_scene: PackedScene):
|
||||
if is_instance_valid(preview_node):
|
||||
preview_node.queue_free()
|
||||
|
||||
current_state = BuilderState.PLACING_COMPONENT
|
||||
active_scene = component_scene
|
||||
preview_node = component_scene.instantiate() as Component
|
||||
builder_scene_root.add_child(preview_node)
|
||||
|
||||
print("Now placing component: ", component_scene.resource_path)
|
||||
|
||||
func on_clear_preview():
|
||||
if is_instance_valid(preview_node):
|
||||
preview_node.queue_free()
|
||||
preview_node = null
|
||||
active_scene = null
|
||||
current_state = BuilderState.IDLE
|
||||
|
||||
|
||||
func _update_preview_position():
|
||||
if not is_instance_valid(preview_piece):
|
||||
if not is_instance_valid(preview_node):
|
||||
return
|
||||
|
||||
var viewport: SubViewport = main_screen.find_child("SubViewport")
|
||||
if not viewport: return
|
||||
|
||||
var world_mouse_pos = viewport.get_canvas_transform().affine_inverse() * viewport.get_mouse_position()
|
||||
var snapped_pos = world_mouse_pos.snapped(Vector2(grid_size, grid_size))
|
||||
preview_piece.global_position = snapped_pos
|
||||
preview_piece.rotation = rotation_angle
|
||||
|
||||
match current_state:
|
||||
BuilderState.PLACING_STRUCTURAL:
|
||||
var snapped_pos = world_mouse_pos.snapped(Vector2(grid_size, grid_size))
|
||||
preview_node.global_position = snapped_pos
|
||||
preview_node.rotation = rotation_angle
|
||||
BuilderState.PLACING_COMPONENT:
|
||||
var target_module = _find_first_module()
|
||||
if target_module:
|
||||
var closest_point = _find_closest_attachment_point(target_module, world_mouse_pos)
|
||||
if closest_point:
|
||||
preview_node.global_position = closest_point.position
|
||||
else:
|
||||
preview_node.global_position = world_mouse_pos
|
||||
else:
|
||||
preview_node.global_position = world_mouse_pos
|
||||
|
||||
|
||||
# --- REFACTORED: Piece Placement ---
|
||||
func _place_piece_from_preview():
|
||||
if not is_instance_valid(preview_piece):
|
||||
if not is_instance_valid(preview_node) or not is_instance_valid(active_scene):
|
||||
return
|
||||
|
||||
var viewport: SubViewport = main_screen.find_child("SubViewport")
|
||||
@ -233,38 +289,69 @@ func _place_piece_from_preview():
|
||||
target_module.global_position = snapped_pos
|
||||
target_module.owner = builder_scene_root
|
||||
|
||||
var piece_to_place = active_piece_scene.instantiate()
|
||||
target_module.structural_container.add_child(piece_to_place)
|
||||
var piece_to_place = active_scene.instantiate()
|
||||
|
||||
# --- The main change: Add as a direct child of the module ---
|
||||
target_module.add_child(piece_to_place)
|
||||
piece_to_place.owner = target_module
|
||||
piece_to_place.rotation = rotation_angle
|
||||
piece_to_place.global_position = snapped_pos
|
||||
|
||||
# --- The Undo/Redo Logic ---
|
||||
undo_redo.create_action("Place Structural Piece")
|
||||
|
||||
# DO method: adds the piece to the scene.
|
||||
undo_redo.add_do_method(target_module.structural_container, "add_child", piece_to_place)
|
||||
undo_redo.add_do_method(target_module, "add_child", piece_to_place)
|
||||
undo_redo.add_do_method(piece_to_place, "set_owner", target_module)
|
||||
|
||||
# DO method: recalculates physics.
|
||||
undo_redo.add_do_method(target_module, "_recalculate_collision_shape")
|
||||
|
||||
# UNDO method: removes the piece from the scene parent.
|
||||
undo_redo.add_undo_method(target_module.structural_container, "remove_child", piece_to_place)
|
||||
# UNDO method: recalculates physics.
|
||||
undo_redo.add_undo_method(target_module, "remove_child", piece_to_place)
|
||||
undo_redo.add_undo_method(target_module, "_recalculate_collision_shape")
|
||||
|
||||
undo_redo.commit_action()
|
||||
|
||||
# --- Component Placement remains the same ---
|
||||
func _place_component_from_preview():
|
||||
if not is_instance_valid(preview_node) or not is_instance_valid(active_scene):
|
||||
push_error("Cannot place component: Invalid preview or scene.")
|
||||
return
|
||||
|
||||
var viewport: SubViewport = main_screen.find_child("SubViewport")
|
||||
if not viewport: return
|
||||
|
||||
var world_mouse_pos = viewport.get_canvas_transform().affine_inverse() * viewport.get_mouse_position()
|
||||
|
||||
var target_module = _find_first_module()
|
||||
if not target_module:
|
||||
push_error("No module found to attach component to.")
|
||||
return
|
||||
|
||||
var closest_point = _find_closest_attachment_point(target_module, world_mouse_pos)
|
||||
if not closest_point:
|
||||
print("No valid attachment point nearby.")
|
||||
return
|
||||
|
||||
var component_to_place = active_scene.instantiate() as Component
|
||||
|
||||
target_module.attach_component(component_to_place, closest_point.position, closest_point.piece)
|
||||
|
||||
undo_redo.create_action("Place Component")
|
||||
undo_redo.add_do_method(target_module, "attach_component", component_to_place, closest_point.position, closest_point.piece)
|
||||
undo_redo.add_undo_method(target_module, "remove_child", component_to_place)
|
||||
undo_redo.add_do_method(target_module, "recalculate_physical_properties")
|
||||
undo_redo.add_undo_method(target_module, "recalculate_physical_properties")
|
||||
undo_redo.commit_action()
|
||||
|
||||
preview_node.global_position = closest_point.position
|
||||
|
||||
# --- Find Nearby Modules remains the same ---
|
||||
func _find_nearby_modules(position: Vector2) -> Module:
|
||||
# Define a margin for the overlap check.
|
||||
const OVERLAP_MARGIN = 20.0
|
||||
|
||||
# Get the shape from the active piece scene.
|
||||
var piece_shape = active_piece_scene.instantiate().find_child("CollisionShape2D").shape
|
||||
if not active_scene or not active_scene.can_instantiate(): return null
|
||||
var piece_instance = active_scene.instantiate()
|
||||
var shape_node = piece_instance.find_child("CollisionShape2D")
|
||||
if not shape_node:
|
||||
piece_instance.queue_free()
|
||||
return null
|
||||
var piece_shape = shape_node.shape
|
||||
piece_instance.queue_free()
|
||||
|
||||
# Create a temporary, slightly larger shape for the overlap check.
|
||||
var enlarged_shape
|
||||
if piece_shape is RectangleShape2D:
|
||||
enlarged_shape = RectangleShape2D.new()
|
||||
@ -274,63 +361,78 @@ func _find_nearby_modules(position: Vector2) -> Module:
|
||||
enlarged_shape.radius = piece_shape.radius + OVERLAP_MARGIN
|
||||
enlarged_shape.height = piece_shape.height + OVERLAP_MARGIN
|
||||
else:
|
||||
# Fallback for other shapes
|
||||
return null
|
||||
|
||||
# Use a PhysicsShapeQuery to find overlapping pieces.
|
||||
var space_state = builder_world.direct_space_state
|
||||
var query = PhysicsShapeQueryParameters2D.new()
|
||||
query.set_shape(enlarged_shape)
|
||||
query.transform = Transform2D(0, position)
|
||||
|
||||
var result = space_state.intersect_shape(query, 1) # Limit to a single result
|
||||
var result = space_state.intersect_shape(query, 1)
|
||||
|
||||
if not result.is_empty():
|
||||
var collider = result[0].get("collider")
|
||||
if collider is StructuralPiece:
|
||||
if collider.get_parent() and collider.get_parent().get_parent() is Module:
|
||||
return collider.get_parent().get_parent()
|
||||
# --- REFACTORED: The module is now the direct parent/owner ---
|
||||
if is_instance_valid(collider.owner) and collider.owner is Module:
|
||||
return collider.owner
|
||||
|
||||
return null
|
||||
|
||||
|
||||
func _find_first_module() -> Module:
|
||||
for node in builder_scene_root.get_children():
|
||||
if node is Module:
|
||||
return node
|
||||
return null
|
||||
|
||||
func _remove_piece_under_mouse():
|
||||
var viewport: SubViewport = main_screen.find_child("SubViewport")
|
||||
if not viewport: return
|
||||
var world_mouse_pos = viewport.get_canvas_transform().affine_inverse() * viewport.get_mouse_position()
|
||||
var snapped_pos = world_mouse_pos.snapped(Vector2(grid_size, grid_size))
|
||||
|
||||
var space_state = builder_world.direct_space_state
|
||||
var query = PhysicsPointQueryParameters2D.new()
|
||||
query.position = world_mouse_pos
|
||||
var result = space_state.intersect_point(query, 1)
|
||||
|
||||
for node in builder_scene_root.get_children():
|
||||
if node is Module:
|
||||
for piece in node.structural_container.get_children():
|
||||
if piece is StructuralPiece and piece.global_position == snapped_pos:
|
||||
_remove_piece_with_undo_redo(piece)
|
||||
return
|
||||
if not result.is_empty():
|
||||
var collider = result[0].get("collider")
|
||||
if collider is StructuralPiece:
|
||||
_remove_piece_with_undo_redo(collider)
|
||||
elif collider is Component:
|
||||
pass
|
||||
|
||||
|
||||
# --- REFACTORED: Piece Removal ---
|
||||
func _remove_piece_with_undo_redo(piece: StructuralPiece):
|
||||
var module = piece.owner as Module
|
||||
var parent = piece.get_parent()
|
||||
if not is_instance_valid(module) or not module is Module:
|
||||
return
|
||||
|
||||
undo_redo.create_action("Remove Structural Piece")
|
||||
print(module.structural_container.get_child_count(false))
|
||||
if module.structural_container.get_child_count(false) >= 1:
|
||||
|
||||
# If this is the last structural piece of the module...
|
||||
if module.get_structural_pieces().size() == 1:
|
||||
# ...remove the entire module.
|
||||
undo_redo.add_do_method(builder_scene_root, "remove_child", module)
|
||||
undo_redo.add_undo_method(builder_scene_root, "add_child", module)
|
||||
undo_redo.add_undo_method(module, "set_owner", builder_scene_root)
|
||||
else:
|
||||
undo_redo.add_do_method(parent, "remove_child", piece)
|
||||
# Otherwise, just remove the single piece from its parent (the module).
|
||||
undo_redo.add_do_method(module, "remove_child", piece)
|
||||
undo_redo.add_do_method(module, "_recalculate_collision_shape")
|
||||
|
||||
undo_redo.add_undo_method(parent, "add_child", piece)
|
||||
undo_redo.add_undo_method(module, "add_child", piece)
|
||||
undo_redo.add_undo_method(piece, "set_owner", module) # Re-assign owner on undo
|
||||
undo_redo.add_undo_method(module, "_recalculate_collision_shape")
|
||||
|
||||
undo_redo.commit_action()
|
||||
|
||||
# --- Toolbar Button Functions ---
|
||||
# --- Toolbar Button Functions (No changes needed) ---
|
||||
func _on_rotate_button_pressed():
|
||||
rotation_angle = wrapf(rotation_angle + PI / 2, 0, TAU)
|
||||
if preview_piece:
|
||||
preview_piece.rotation = rotation_angle
|
||||
if is_instance_valid(preview_node):
|
||||
preview_node.rotation = rotation_angle
|
||||
_update_preview_position()
|
||||
|
||||
func _on_center_button_pressed():
|
||||
@ -341,52 +443,33 @@ func _on_pressurise_button_pressed():
|
||||
pass
|
||||
|
||||
func _on_save_button_pressed():
|
||||
# Find a module to save. We'll prioritize the selected one.
|
||||
var module_to_save: Module
|
||||
var selected_nodes = EditorInterface.get_selection().get_selected_nodes()
|
||||
if not selected_nodes.is_empty() and selected_nodes[0] is Module:
|
||||
module_to_save = selected_nodes[0]
|
||||
elif builder_scene_root.get_child_count() > 0:
|
||||
for node in builder_scene_root.get_children():
|
||||
if node is Module:
|
||||
module_to_save = node
|
||||
break
|
||||
|
||||
else:
|
||||
module_to_save = _find_first_module()
|
||||
|
||||
if not is_instance_valid(module_to_save):
|
||||
push_error("Error: No Module node found or selected to save.")
|
||||
return
|
||||
|
||||
# Create and configure the save dialog
|
||||
var save_dialog = EditorFileDialog.new()
|
||||
save_dialog.file_mode = EditorFileDialog.FILE_MODE_SAVE_FILE
|
||||
save_dialog.add_filter("*.tscn; Godot Scene")
|
||||
save_dialog.current_path = "res://modules/" + module_to_save.name + ".tscn"
|
||||
|
||||
# FIX: Add the dialog to the main editor screen, not the plugin's control node
|
||||
EditorInterface.get_editor_main_screen().add_child(save_dialog)
|
||||
save_dialog.popup_centered_ratio()
|
||||
|
||||
# Connect the signal to our new save function
|
||||
save_dialog.file_selected.connect(Callable(self, "_perform_save").bind(module_to_save))
|
||||
|
||||
func _perform_save(file_path: String, module_to_save: Module):
|
||||
# Make sure the directory exists before attempting to save.
|
||||
var save_dir = file_path.get_base_dir()
|
||||
var dir = DirAccess.open("res://")
|
||||
if not dir.dir_exists(save_dir):
|
||||
dir.make_dir_recursive(save_dir)
|
||||
#
|
||||
## FIX: Manually get the structural container reference from the duplicated module.
|
||||
#var duplicate_structural_container = duplicate_module.find_child("StructuralContainer")
|
||||
#
|
||||
#if is_instance_valid(duplicate_structural_container):
|
||||
## FIX: Correctly set the owner of all child nodes to the new root.
|
||||
## This is the crucial step to ensure the children are packed correctly.
|
||||
#for piece in duplicate_structural_container.get_children():
|
||||
#print(piece)
|
||||
#piece.owner = duplicate_module
|
||||
|
||||
# Pack the node into a PackedScene.
|
||||
var packed_scene = PackedScene.new()
|
||||
var error = packed_scene.pack(module_to_save)
|
||||
|
||||
@ -394,10 +477,6 @@ func _perform_save(file_path: String, module_to_save: Module):
|
||||
push_error("Error packing scene: ", error_string(error))
|
||||
return
|
||||
|
||||
# FIX: Reset the duplicated module's position so it's centered in its own scene.
|
||||
#duplicate_module.global_position = Vector2.ZERO
|
||||
|
||||
# Save the PackedScene to a file.
|
||||
var save_result = ResourceSaver.save(packed_scene, file_path)
|
||||
|
||||
if save_result == OK:
|
||||
@ -409,7 +488,8 @@ func _perform_save(file_path: String, module_to_save: Module):
|
||||
|
||||
func _on_undo_redo_action_committed():
|
||||
_refresh_tree_display()
|
||||
|
||||
|
||||
# --- REFACTORED: Tree Display ---
|
||||
func _refresh_tree_display():
|
||||
if not is_instance_valid(tree_control):
|
||||
return
|
||||
@ -425,8 +505,51 @@ func _refresh_tree_display():
|
||||
module_item.set_text(0, module.name)
|
||||
module_item.set_meta("node", module)
|
||||
|
||||
for piece in module.structural_container.get_children():
|
||||
if piece is StructuralPiece:
|
||||
var piece_item = tree_control.create_item(module_item)
|
||||
piece_item.set_text(0, piece.name)
|
||||
piece_item.set_meta("node", piece)
|
||||
# Use the module's helper functions to find children
|
||||
for piece in module.get_structural_pieces():
|
||||
var piece_item = tree_control.create_item(module_item)
|
||||
piece_item.set_text(0, piece.name)
|
||||
piece_item.set_meta("node", piece)
|
||||
|
||||
for component in module.get_components():
|
||||
var component_item = tree_control.create_item(module_item)
|
||||
component_item.set_text(0, component.name)
|
||||
component_item.set_meta("node", component)
|
||||
|
||||
|
||||
func _find_closest_attachment_point(module: Module, world_pos: Vector2):
|
||||
var min_distance_sq = module.COMPONENT_GRID_SIZE * module.COMPONENT_GRID_SIZE * 0.5
|
||||
var closest_point = null
|
||||
|
||||
for point in module.get_attachment_points():
|
||||
var dist_sq = point.position.distance_squared_to(world_pos)
|
||||
if dist_sq < min_distance_sq:
|
||||
min_distance_sq = dist_sq
|
||||
closest_point = point
|
||||
|
||||
return closest_point
|
||||
|
||||
const GeneratorScript = preload("res://data/structure/structure_generator.gd")
|
||||
|
||||
# The callback function
|
||||
func _on_generate_structures_pressed():
|
||||
if GeneratorScript:
|
||||
var generator = GeneratorScript.new()
|
||||
if generator.has_method("generate_system_one"):
|
||||
generator.generate_system_one()
|
||||
else:
|
||||
push_error("StructureGenerator script missing 'generate_system_one' method.")
|
||||
|
||||
if generator.has_method("generate_system_two_pentagonal"):
|
||||
generator.generate_system_two_pentagonal()
|
||||
else:
|
||||
push_error("StructureGenerator script missing 'generate_system_two_pentagonal' method.")
|
||||
|
||||
if generator.has_method("generate_system_two_v2_sphere"):
|
||||
generator.generate_system_two_v2_sphere()
|
||||
else:
|
||||
push_error("StructureGenerator script missing 'generate_system_two_v2_sphere' method.")
|
||||
|
||||
# Cleanup if it's a Node
|
||||
if generator is Node:
|
||||
generator.queue_free()
|
||||
31
src/data/structure/definitions/1m_square_dome_top.tres
Normal file
31
src/data/structure/definitions/1m_square_dome_top.tres
Normal file
@ -0,0 +1,31 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://balw2uv0dx8tw"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_ylkpk"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_ylkpk")
|
||||
piece_name = "1m Square Dome Top"
|
||||
type = 1
|
||||
shape = "Square"
|
||||
vertices = Array[Vector3]([Vector3(0.5, 0.5, 0), Vector3(-0.4999999999999999, 0.5, 0), Vector3(-0.5000000000000001, -0.4999999999999999, 0), Vector3(0.49999999999999983, -0.5000000000000001, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0, 0.7869350219613372, -0.6170358751407486),
|
||||
"position": Vector3(5.551115123125783e-17, 0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0.6170358751407486, 0.7869350219613372)
|
||||
}, {
|
||||
"normal": Vector3(-0.7869350219613372, 1.74734676053076e-16, -0.6170358751407486),
|
||||
"position": Vector3(-0.5, 5.551115123125783e-17, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-0.6170358751407486, 1.370094871201985e-16, 0.7869350219613372)
|
||||
}, {
|
||||
"normal": Vector3(-1.7473467605307596e-16, -0.7869350219613372, -0.6170358751407486),
|
||||
"position": Vector3(-1.3877787807814457e-16, -0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-1.3700948712019848e-16, -0.6170358751407486, 0.7869350219613372)
|
||||
}, {
|
||||
"normal": Vector3(0.7869350219613372, -2.1841834506634496e-16, -0.6170358751407486),
|
||||
"position": Vector3(0.5, -1.3877787807814457e-16, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0.6170358751407486, -1.712618589002481e-16, 0.7869350219613372)
|
||||
}])
|
||||
31
src/data/structure/definitions/1m_square_flat.tres
Normal file
31
src/data/structure/definitions/1m_square_flat.tres
Normal file
@ -0,0 +1,31 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://btpl1hnsk78db"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_wlppn"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_wlppn")
|
||||
piece_name = "1m Square Flat"
|
||||
type = 1
|
||||
shape = "Square"
|
||||
vertices = Array[Vector3]([Vector3(0.5, 0.5, 0), Vector3(-0.4999999999999999, 0.5, 0), Vector3(-0.5000000000000001, -0.4999999999999999, 0), Vector3(0.49999999999999983, -0.5000000000000001, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0, 1, 0),
|
||||
"position": Vector3(5.551115123125783e-17, 0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-1, 2.2204460492503136e-16, 0),
|
||||
"position": Vector3(-0.5, 5.551115123125783e-17, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-2.220446049250313e-16, -1, 0),
|
||||
"position": Vector3(-1.3877787807814457e-16, -0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(1, -2.7755575615628914e-16, 0),
|
||||
"position": Vector3(0.5, -1.3877787807814457e-16, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}])
|
||||
27
src/data/structure/definitions/1m_triangle_dome_side.tres
Normal file
27
src/data/structure/definitions/1m_triangle_dome_side.tres
Normal file
@ -0,0 +1,27 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://da1m4eaojir4s"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_bcg7m"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_bcg7m")
|
||||
piece_name = "1m Triangle Dome Side"
|
||||
type = 1
|
||||
base_mass = 5.0
|
||||
shape = "Triangle"
|
||||
vertices = Array[Vector3]([Vector3(-0.5, -0.28867513459481287, 0), Vector3(0.5, -0.28867513459481287, 0), Vector3(0, 0.5773502691896257, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0, -0.7869350219613372, -0.6170358751407486),
|
||||
"position": Vector3(0, -0.28867513459481287, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, -0.6170358751407486, 0.7869350219613372)
|
||||
}, {
|
||||
"normal": Vector3(0.8420970529402404, 0.4861849601988384, -0.23344536385590545),
|
||||
"position": Vector3(0.25, 0.14433756729740643, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0.2021696154949157, 0.11672268192795272, 0.9723699203976766)
|
||||
}, {
|
||||
"normal": Vector3(-0.8420970529402404, 0.4861849601988384, -0.23344536385590545),
|
||||
"position": Vector3(-0.25, 0.14433756729740643, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-0.2021696154949157, 0.11672268192795272, 0.9723699203976766)
|
||||
}])
|
||||
27
src/data/structure/definitions/1m_triangle_flat.tres
Normal file
27
src/data/structure/definitions/1m_triangle_flat.tres
Normal file
@ -0,0 +1,27 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://dlqju8f1hiepk"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_44lvp"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_44lvp")
|
||||
piece_name = "1m Triangle Flat"
|
||||
type = 1
|
||||
base_mass = 5.0
|
||||
shape = "Triangle"
|
||||
vertices = Array[Vector3]([Vector3(0.5000000000000001, -0.28867513459481287, 0), Vector3(3.53525079574969e-17, 0.5773502691896258, 0), Vector3(-0.5000000000000001, -0.28867513459481275, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0.8660254037844387, 0.5000000000000001, 0),
|
||||
"position": Vector3(0.25000000000000006, 0.1443375672974065, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-0.8660254037844386, 0.5000000000000001, 0),
|
||||
"position": Vector3(-0.25000000000000006, 0.14433756729740654, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-4.440892098500626e-16, -1, 0),
|
||||
"position": Vector3(-1.1102230246251565e-16, -0.288675134594813, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}])
|
||||
27
src/data/structure/definitions/1m_triangle_geo.tres
Normal file
27
src/data/structure/definitions/1m_triangle_geo.tres
Normal file
@ -0,0 +1,27 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://dyvonkcjxbh4r"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_lytiu"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_lytiu")
|
||||
piece_name = "1m Triangle Geo"
|
||||
type = 1
|
||||
base_mass = 5.0
|
||||
shape = "Triangle"
|
||||
vertices = Array[Vector3]([Vector3(0.5000000000000001, -0.28867513459481287, 0), Vector3(3.53525079574969e-17, 0.5773502691896258, 0), Vector3(-0.5000000000000001, -0.28867513459481275, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0.8090448070910988, 0.46710223716051485, -0.35673799931962524),
|
||||
"position": Vector3(0.25000000000000006, 0.1443375672974065, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0.3089441699060312, 0.1783689996598126, 0.9342044743210295)
|
||||
}, {
|
||||
"normal": Vector3(-0.8090448070910988, 0.46710223716051485, -0.35673799931962513),
|
||||
"position": Vector3(-0.25000000000000006, 0.14433756729740654, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-0.30894416990603113, 0.1783689996598126, 0.9342044743210295)
|
||||
}, {
|
||||
"normal": Vector3(-4.148701268396191e-16, -0.9342044743210295, -0.35673799931962513),
|
||||
"position": Vector3(-1.1102230246251565e-16, -0.288675134594813, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-1.584234962413445e-16, -0.35673799931962513, 0.9342044743210295)
|
||||
}])
|
||||
35
src/data/structure/definitions/s1_cyl12_wall.tres
Normal file
35
src/data/structure/definitions/s1_cyl12_wall.tres
Normal file
@ -0,0 +1,35 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://dq7lk5e3686oh"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_48w0s"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_48w0s")
|
||||
piece_name = "S 1 Cyl 12 Wall"
|
||||
type = 1
|
||||
base_mass = 5.0
|
||||
cost = {
|
||||
"Aluminium": 5.0
|
||||
}
|
||||
shape = "Rect"
|
||||
vertices = Array[Vector3]([Vector3(-0.5, 0.5, 0), Vector3(0.5, 0.5, 0), Vector3(0.5, -0.5, 0), Vector3(-0.5, -0.5, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0, -1, 0),
|
||||
"position": Vector3(0, 0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(0, 1, 0),
|
||||
"position": Vector3(0, -0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-0.9659258262890683, 0, -0.25881904510252074),
|
||||
"position": Vector3(0.5, 0, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-0.25881904510252074, 0, 0.9659258262890683)
|
||||
}, {
|
||||
"normal": Vector3(0.9659258262890683, 0, -0.25881904510252074),
|
||||
"position": Vector3(-0.5, 0, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0.25881904510252074, 0, 0.9659258262890683)
|
||||
}])
|
||||
35
src/data/structure/definitions/s1_cyl8_wall.tres
Normal file
35
src/data/structure/definitions/s1_cyl8_wall.tres
Normal file
@ -0,0 +1,35 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://dlkqr2t1b52kg"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_0wpc7"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_0wpc7")
|
||||
piece_name = "S 1 Cyl 8 Wall"
|
||||
type = 1
|
||||
base_mass = 5.0
|
||||
cost = {
|
||||
"Aluminium": 5.0
|
||||
}
|
||||
shape = "Rect"
|
||||
vertices = Array[Vector3]([Vector3(-0.5, 0.5, 0), Vector3(0.5, 0.5, 0), Vector3(0.5, -0.5, 0), Vector3(-0.5, -0.5, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0, -1, 0),
|
||||
"position": Vector3(0, 0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(0, 1, 0),
|
||||
"position": Vector3(0, -0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-0.9238795325112867, 0, -0.3826834323650898),
|
||||
"position": Vector3(0.5, 0, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-0.3826834323650898, 0, 0.9238795325112867)
|
||||
}, {
|
||||
"normal": Vector3(0.9238795325112867, 0, -0.3826834323650898),
|
||||
"position": Vector3(-0.5, 0, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0.3826834323650898, 0, 0.9238795325112867)
|
||||
}])
|
||||
35
src/data/structure/definitions/s1_dome_sq_cap.tres
Normal file
35
src/data/structure/definitions/s1_dome_sq_cap.tres
Normal file
@ -0,0 +1,35 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://d4hsi33r6tdla"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_fqsnc"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_fqsnc")
|
||||
piece_name = "S 1 Dome Sq Cap"
|
||||
type = 1
|
||||
base_mass = 5.0
|
||||
cost = {
|
||||
"Aluminium": 5.0
|
||||
}
|
||||
shape = "Square"
|
||||
vertices = Array[Vector3]([Vector3(0.5, 0.5, 0), Vector3(-0.4999999999999999, 0.5, 0), Vector3(-0.5000000000000001, -0.4999999999999999, 0), Vector3(0.49999999999999983, -0.5000000000000001, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0, 0.9396926207859084, -0.3420201433256687),
|
||||
"position": Vector3(5.551115123125783e-17, 0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0.3420201433256687, 0.9396926207859084)
|
||||
}, {
|
||||
"normal": Vector3(-0.9396926207859084, 2.0865367673337435e-16, -0.3420201433256687),
|
||||
"position": Vector3(-0.5, 5.551115123125783e-17, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-0.3420201433256687, 7.59437276011507e-17, 0.9396926207859084)
|
||||
}, {
|
||||
"normal": Vector3(-2.086536767333743e-16, -0.9396926207859084, -0.3420201433256687),
|
||||
"position": Vector3(-1.3877787807814457e-16, -0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-7.594372760115069e-17, -0.3420201433256687, 0.9396926207859084)
|
||||
}, {
|
||||
"normal": Vector3(0.9396926207859084, -1.5649025755003072e-16, -0.3420201433256687),
|
||||
"position": Vector3(0.4999999999999999, -5.551115123125783e-17, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0.3420201433256687, -5.695779570086302e-17, 0.9396926207859084)
|
||||
}])
|
||||
30
src/data/structure/definitions/s1_dome_sq_side.tres
Normal file
30
src/data/structure/definitions/s1_dome_sq_side.tres
Normal file
@ -0,0 +1,30 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://e48yh6c4yj45"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_mh72h"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_mh72h")
|
||||
piece_name = "S 1 Dome Sq Side"
|
||||
type = 1
|
||||
base_mass = 2.1650635094610964
|
||||
cost = {
|
||||
"Aluminium": 2.1650635094610964
|
||||
}
|
||||
shape = "Triangle"
|
||||
vertices = Array[Vector3]([Vector3(-0.5, 0, 0), Vector3(0.5, 0, 0), Vector3(0, -0.8660254037844386, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0, -0.9396926207859084, -0.3420201433256687),
|
||||
"position": Vector3(0, 0, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, -0.3420201433256687, 0.9396926207859084)
|
||||
}, {
|
||||
"normal": Vector3(-0.8528685319524433, 0.4924038765061041, -0.1736481776669304),
|
||||
"position": Vector3(0.25, -0.4330127018922193, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-0.1503837331804353, 0.08682408883346518, 0.984807753012208)
|
||||
}, {
|
||||
"normal": Vector3(0.8528685319524433, 0.4924038765061041, -0.1736481776669304),
|
||||
"position": Vector3(-0.25, -0.4330127018922193, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0.1503837331804353, 0.08682408883346518, 0.984807753012208)
|
||||
}])
|
||||
35
src/data/structure/definitions/s1_flat_square.tres
Normal file
35
src/data/structure/definitions/s1_flat_square.tres
Normal file
@ -0,0 +1,35 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://c00y87i8upmes"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_dyfmy"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_dyfmy")
|
||||
piece_name = "S 1 Flat Square"
|
||||
type = 1
|
||||
base_mass = 5.0
|
||||
cost = {
|
||||
"Aluminium": 5.0
|
||||
}
|
||||
shape = "Square"
|
||||
vertices = Array[Vector3]([Vector3(0.5, 0.5, 0), Vector3(-0.4999999999999999, 0.5, 0), Vector3(-0.5000000000000001, -0.4999999999999999, 0), Vector3(0.49999999999999983, -0.5000000000000001, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0, 1, 0),
|
||||
"position": Vector3(5.551115123125783e-17, 0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-1, 2.2204460492503136e-16, 0),
|
||||
"position": Vector3(-0.5, 5.551115123125783e-17, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-2.220446049250313e-16, -1, 0),
|
||||
"position": Vector3(-1.3877787807814457e-16, -0.5, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(1, -1.6653345369377348e-16, 0),
|
||||
"position": Vector3(0.4999999999999999, -5.551115123125783e-17, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}])
|
||||
30
src/data/structure/definitions/s1_flat_triangle.tres
Normal file
30
src/data/structure/definitions/s1_flat_triangle.tres
Normal file
@ -0,0 +1,30 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://dn402fpt477ho"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_o42ak"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_o42ak")
|
||||
piece_name = "S 1 Flat Triangle"
|
||||
type = 1
|
||||
base_mass = 2.1650635094610973
|
||||
cost = {
|
||||
"Aluminium": 2.1650635094610973
|
||||
}
|
||||
shape = "Triangle"
|
||||
vertices = Array[Vector3]([Vector3(0.5000000000000001, -0.28867513459481287, 0), Vector3(3.53525079574969e-17, 0.5773502691896258, 0), Vector3(-0.5000000000000001, -0.28867513459481275, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0.8660254037844387, 0.5000000000000001, 0),
|
||||
"position": Vector3(0.25000000000000006, 0.1443375672974065, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-0.8660254037844386, 0.5000000000000001, 0),
|
||||
"position": Vector3(-0.25000000000000006, 0.14433756729740654, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-1.1102230246251563e-16, -1, 0),
|
||||
"position": Vector3(0, -0.2886751345948128, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}])
|
||||
30
src/data/structure/definitions/s2_equilateral_tri.tres
Normal file
30
src/data/structure/definitions/s2_equilateral_tri.tres
Normal file
@ -0,0 +1,30 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://byuhmmhixc2jp"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_4ngxd"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_4ngxd")
|
||||
piece_name = "S 2 Equilateral Tri"
|
||||
type = 1
|
||||
base_mass = 2.1650635094610973
|
||||
cost = {
|
||||
"Aluminium": 2.1650635094610973
|
||||
}
|
||||
shape = "Triangle"
|
||||
vertices = Array[Vector3]([Vector3(0.5000000000000001, -0.28867513459481287, 0), Vector3(3.53525079574969e-17, 0.5773502691896258, 0), Vector3(-0.5000000000000001, -0.28867513459481275, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0.8660254037844387, 0.5000000000000001, 0),
|
||||
"position": Vector3(0.25000000000000006, 0.1443375672974065, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-0.8660254037844386, 0.5000000000000001, 0),
|
||||
"position": Vector3(-0.25000000000000006, 0.14433756729740654, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}, {
|
||||
"normal": Vector3(-1.1102230246251563e-16, -1, 0),
|
||||
"position": Vector3(0, -0.2886751345948128, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, 0, 1)
|
||||
}])
|
||||
30
src/data/structure/definitions/s2_geo_tri.tres
Normal file
30
src/data/structure/definitions/s2_geo_tri.tres
Normal file
@ -0,0 +1,30 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://bx6w62uqleyro"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_lfiao"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_lfiao")
|
||||
piece_name = "S 2 Geo Tri"
|
||||
type = 1
|
||||
base_mass = 2.1650635094610964
|
||||
cost = {
|
||||
"Aluminium": 2.1650635094610964
|
||||
}
|
||||
shape = "Triangle"
|
||||
vertices = Array[Vector3]([Vector3(-0.5, -0.28867513459481287, 0), Vector3(0.5, -0.28867513459481287, 0), Vector3(0, 0.5773502691896257, 0)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0, -0.9342044743210295, -0.35673799931962513),
|
||||
"position": Vector3(0, -0.28867513459481287, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0, -0.35673799931962513, 0.9342044743210295)
|
||||
}, {
|
||||
"normal": Vector3(0.8090448070910988, 0.46710223716051485, -0.35673799931962524),
|
||||
"position": Vector3(0.25, 0.14433756729740643, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(0.3089441699060312, 0.1783689996598126, 0.9342044743210295)
|
||||
}, {
|
||||
"normal": Vector3(-0.8090448070910988, 0.46710223716051485, -0.35673799931962524),
|
||||
"position": Vector3(-0.25, 0.14433756729740643, 0),
|
||||
"type": 0,
|
||||
"up": Vector3(-0.3089441699060312, 0.1783689996598126, 0.9342044743210295)
|
||||
}])
|
||||
30
src/data/structure/definitions/s2_geo_v2_a.tres
Normal file
30
src/data/structure/definitions/s2_geo_v2_a.tres
Normal file
@ -0,0 +1,30 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://b1kwhqprqqgpk"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_mpy4c"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_mpy4c")
|
||||
piece_name = "S 2 Geo V 2 A"
|
||||
type = 1
|
||||
base_mass = 1.8234625713415449
|
||||
cost = {
|
||||
"Aluminium": 1.8234625713415449
|
||||
}
|
||||
shape = "Triangle"
|
||||
vertices = Array[Vector3]([Vector3(-0.4363389981249825, -0.03590512589028917, 0.21157661739748426), Vector3(0.3726779962499651, -0.38655593424232904, 0.14421169130125808), Vector3(0.06366100187501747, 0.42246106013261825, -0.35578830869874195)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(-0.3090169943749473, -0.8090169943749476, 0.5),
|
||||
"position": Vector3(-0.01967233145831576, -0.1305476470426356, 0.10994463378783126),
|
||||
"type": 0,
|
||||
"up": Vector3(0.25989191300775444, 0.4338885645526948, 0.8626684804161862)
|
||||
}, {
|
||||
"normal": Vector3(0.8506508083520399, 1.1102230246251565e-16, -0.5257311121191337),
|
||||
"position": Vector3(0.1348361657291579, 0.011095294085271323, -0.06538077038818868),
|
||||
"type": 0,
|
||||
"up": Vector3(0.42532540417602, 0.5877852522924731, 0.6881909602355868)
|
||||
}, {
|
||||
"normal": Vector3(-0.8090169943749475, 0.5000000000000001, -0.3090169943749475),
|
||||
"position": Vector3(-0.11516383427084212, 0.11945235295736434, -0.04456386339964247),
|
||||
"type": 0,
|
||||
"up": Vector3(0.16062203564002311, 0.6937804775604491, 0.702046444776163)
|
||||
}])
|
||||
30
src/data/structure/definitions/s2_geo_v2_b.tres
Normal file
30
src/data/structure/definitions/s2_geo_v2_b.tres
Normal file
@ -0,0 +1,30 @@
|
||||
[gd_resource type="Resource" script_class="StructureData" load_steps=2 format=3 uid="uid://bwe7g4wf44opf"]
|
||||
|
||||
[ext_resource type="Script" uid="uid://bdllldtl4bia3" path="res://data/structure/structure_data.gd" id="1_ra6qr"]
|
||||
|
||||
[resource]
|
||||
script = ExtResource("1_ra6qr")
|
||||
piece_name = "S 2 Geo V 2 B"
|
||||
type = 1
|
||||
base_mass = 2.165063509461097
|
||||
cost = {
|
||||
"Aluminium": 2.165063509461097
|
||||
}
|
||||
shape = "Triangle"
|
||||
vertices = Array[Vector3]([Vector3(-0.06366100187501737, -0.37267799624996495, 0.4363389981249825), Vector3(0.4363389981249825, -0.06366100187501737, -0.37267799624996495), Vector3(-0.37267799624996506, 0.43633899812498234, -0.06366100187501755)])
|
||||
mounts = Array[Dictionary]([{
|
||||
"normal": Vector3(0.5257311121191337, -0.8506508083520399, -1.1102230246251565e-16),
|
||||
"position": Vector3(0.11516383427084209, -0.13483616572915785, 0.019672331458315817),
|
||||
"type": 0,
|
||||
"up": Vector3(0.6881909602355868, 0.42532540417602005, 0.5877852522924731)
|
||||
}, {
|
||||
"normal": Vector3(-8.326672684688674e-17, 0.5257311121191337, -0.8506508083520399),
|
||||
"position": Vector3(0.019672331458315817, 0.11516383427084209, -0.1348361657291579),
|
||||
"type": 0,
|
||||
"up": Vector3(0.5877852522924731, 0.6881909602355867, 0.42532540417601994)
|
||||
}, {
|
||||
"normal": Vector3(-0.8506508083520399, -1.1102230246251565e-16, 0.5257311121191337),
|
||||
"position": Vector3(-0.1348361657291579, 0.019672331458315817, 0.11516383427084209),
|
||||
"type": 0,
|
||||
"up": Vector3(0.42532540417602, 0.5877852522924731, 0.6881909602355868)
|
||||
}])
|
||||
63
src/data/structure/structure_data.gd
Normal file
63
src/data/structure/structure_data.gd
Normal file
@ -0,0 +1,63 @@
|
||||
class_name StructureData extends Resource
|
||||
|
||||
enum PieceType {STRUT, PLATE, CONNECTOR}
|
||||
|
||||
|
||||
@export_group("Identity")
|
||||
@export var piece_name: String = "Structure"
|
||||
@export var type: PieceType = PieceType.STRUT
|
||||
@export var base_mass: float = 10.0
|
||||
@export var health_max: float = 100.0
|
||||
@export var cost: Dictionary = {"Aluminium": 10.0}
|
||||
|
||||
@export_group("Visuals & Physics")
|
||||
## The mesh to display for static pieces. Leave null for procedural pieces.
|
||||
@export var mesh: Mesh
|
||||
## The collision shape for physics. Leave null for procedural pieces.
|
||||
@export var collision_shape: Shape3D
|
||||
|
||||
@export_group("Procedural Parameters")
|
||||
# For procedural pieces, we store parameters instead of a mesh
|
||||
@export var shape: String = "Cube"
|
||||
@export var vertices: Array[Vector3] = [
|
||||
Vector3(1.0, 1.0, 1.0),
|
||||
Vector3(-1.0, 1.0, 1.0),
|
||||
Vector3(-1.0, -1.0, 1.0),
|
||||
Vector3(1.0, -1.0, 1.0),
|
||||
Vector3(1.0, 1.0, -1.0),
|
||||
Vector3(-1.0, 1.0, -1.0),
|
||||
Vector3(-1.0, -1.0, -1.0),
|
||||
Vector3(1.0, -1.0, -1.0)
|
||||
]
|
||||
# @export var procedural_params: Dictionary = {}
|
||||
|
||||
|
||||
@export_group("Mounts")
|
||||
## Array of Dictionaries defining attachment points.
|
||||
## Format: { "position": Vector3, "normal": Vector3, "up": Vector3, "type": int }
|
||||
@export var mounts: Array[Dictionary] = []
|
||||
|
||||
# Helper to get mounts transformed into world space for snapping calculations
|
||||
func get_mounts_transformed(global_transform: Transform3D) -> Array:
|
||||
var world_mounts = []
|
||||
for mount in mounts:
|
||||
# Default to identity rotation if normal/up are missing
|
||||
var normal = mount.get("normal", Vector3.BACK) # Default -Z forward
|
||||
var up = mount.get("up", Vector3.UP)
|
||||
|
||||
world_mounts.append({
|
||||
"position": global_transform * mount.get("position", Vector3.ZERO),
|
||||
"normal": global_transform.basis * normal,
|
||||
"up": global_transform.basis * up,
|
||||
"type": mount.get("type", 0)
|
||||
})
|
||||
return world_mounts
|
||||
|
||||
# Helper to add a mount dynamically (for procedural pieces)
|
||||
func add_mount(pos: Vector3, normal: Vector3, up: Vector3 = Vector3.UP, type: int = 0):
|
||||
mounts.append({
|
||||
"position": pos,
|
||||
"normal": normal,
|
||||
"up": up,
|
||||
"type": type
|
||||
})
|
||||
1
src/data/structure/structure_data.gd.uid
Normal file
1
src/data/structure/structure_data.gd.uid
Normal file
@ -0,0 +1 @@
|
||||
uid://bdllldtl4bia3
|
||||
334
src/data/structure/structure_generator.gd
Normal file
334
src/data/structure/structure_generator.gd
Normal file
@ -0,0 +1,334 @@
|
||||
@tool
|
||||
class_name StructureGenerator extends Node
|
||||
|
||||
# --- CONFIGURATION ---
|
||||
const DENSITY_ALUMINUM = 5.0 # kg per square meter (approx for hull plating)
|
||||
const COST_PER_KG = 1.0 # Currency per kg
|
||||
|
||||
|
||||
# Run this to regenerate the entire "System 1" library
|
||||
func generate_system_one():
|
||||
var dir = DirAccess.open("res://data/structure/definitions/")
|
||||
if not dir: DirAccess.make_dir_recursive_absolute("res://data/structure/definitions/")
|
||||
|
||||
print("--- Generating Design System 1: Geodesic ---")
|
||||
|
||||
# 1. Basic Flats (The backbone)
|
||||
create_polygon_plate("s1_flat_square", 4, 0.0)
|
||||
create_polygon_plate("s1_flat_triangle", 3, 0.0)
|
||||
|
||||
# 2. Cylinders (Corridors & Fuselage)
|
||||
# 8-Sided: ~2.6m Diameter (Good for corridors)
|
||||
create_cylinder_plate("s1_cyl8_wall", 8)
|
||||
# 12-Sided: ~3.9m Diameter (Good for main fuselage)
|
||||
create_cylinder_plate("s1_cyl12_wall", 12)
|
||||
|
||||
# 3. Square-Based Dome Cap
|
||||
# This creates a 'Cap' square that tilts its edges down,
|
||||
# and a 'Side' triangle that connects that square to a flatter ring below.
|
||||
create_square_dome_set("s1_dome_sq", 20.0) # 20 degree slope
|
||||
|
||||
print("Generation Complete.")
|
||||
|
||||
# --- CORE GENERATORS ---
|
||||
|
||||
# Creates a regular polygon (Square, Triangle, Hexagon, etc.)
|
||||
# bend_angle: Degrees to tilt the mount DOWN. 0 = Flat floor. >0 = Dome/Cylinder.
|
||||
func create_polygon_plate(id: String, sides: int, bend_angle: float):
|
||||
var res = _create_base_resource(id, "Plate")
|
||||
res.shape = "Square" if sides == 4 else "Triangle"
|
||||
|
||||
# Calculate Radius for exactly 1.0m Edge Length
|
||||
var radius = 0.5 / sin(PI / sides)
|
||||
var angle_step = TAU / sides
|
||||
var start_angle = PI / 4 if sides == 4 else -PI / 6 # Align flat edges to axes
|
||||
|
||||
res.vertices = [] as Array[Vector3]
|
||||
for i in range(sides):
|
||||
var theta = start_angle + i * angle_step
|
||||
res.vertices.append(Vector3(cos(theta), sin(theta), 0) * radius)
|
||||
|
||||
# Generate Mounts
|
||||
for i in range(sides):
|
||||
var p1 = res.vertices[i]
|
||||
var p2 = res.vertices[(i + 1) % sides]
|
||||
_add_edge_mount(res, p1, p2, bend_angle)
|
||||
|
||||
_finalize_resource(res, id)
|
||||
|
||||
# Creates a rectangular plate that forms one segment of a N-sided cylinder
|
||||
func create_cylinder_plate(id: String, total_sides: int):
|
||||
var res = _create_base_resource(id, "Cylinder Wall")
|
||||
res.shape = "Rect"
|
||||
|
||||
# Height = 1.0m (Standard grid)
|
||||
# Width = 1.0m (Chord length of the cylinder)
|
||||
var v0 = Vector3(-0.5, 0.5, 0)
|
||||
var v1 = Vector3(0.5, 0.5, 0)
|
||||
var v2 = Vector3(0.5, -0.5, 0)
|
||||
var v3 = Vector3(-0.5, -0.5, 0)
|
||||
res.vertices = [v0, v1, v2, v3] as Array[Vector3]
|
||||
|
||||
# Calculate the bend angle required to form a circle
|
||||
# Interior angle = (n-2)*180/n. Bend = (180 - Interior)/2 = 360/n / 2 = 180/n
|
||||
var bend = 180.0 / total_sides
|
||||
|
||||
# Top/Bottom: Flat (0 deg) to stack cylinders
|
||||
_add_edge_mount(res, v0, v1, 0.0)
|
||||
_add_edge_mount(res, v2, v3, 0.0)
|
||||
|
||||
# Left/Right: Bent to form the ring
|
||||
_add_edge_mount(res, v1, v2, bend)
|
||||
_add_edge_mount(res, v3, v0, bend)
|
||||
|
||||
_finalize_resource(res, id)
|
||||
|
||||
# Creates a Square Cap and its matching Triangle skirt
|
||||
func create_square_dome_set(prefix: String, slope_angle: float):
|
||||
# PART A: The Top Square
|
||||
# It acts like a flat square, but all mounts are tilted down by 'slope_angle'
|
||||
create_polygon_plate(prefix + "_cap", 4, slope_angle)
|
||||
|
||||
# PART B: The Side Triangle
|
||||
# This triangle connects the Tilted Square (Top) to a Flat Ring (Bottom)
|
||||
# It is an Isosceles triangle.
|
||||
# Top Edge: Matches the Square (1m).
|
||||
# Side Edges: Calculated to reach the flat plane.
|
||||
|
||||
var res = _create_base_resource(prefix + "_side", "Dome Tri")
|
||||
res.shape = "Triangle"
|
||||
|
||||
# We generate this triangle Flat on XY, but calculate mounts to fit the 3D gap.
|
||||
# Geometry:
|
||||
# The gap it fills has a top width of 1m.
|
||||
# The 'dihedral' angle between the Square and this Triangle is (180 - slope_angle).
|
||||
# To interface with the square, this triangle's Top Mount must act like it's bent "up" by slope_angle relative to the square's normal.
|
||||
|
||||
# Actually, simpler logic:
|
||||
# 1. Top Edge: Connects to the Square. Needs 'slope_angle' bend.
|
||||
# 2. Side Edges: Connect to neighbors in the ring.
|
||||
# 3. Bottom Vertex: Pointing down? No, usually a dome layer is a ring of triangles (point up) and triangles (point down).
|
||||
|
||||
# Let's assume a "Pyramid" style cap for simplicity first:
|
||||
# 4 Triangles meeting at a point is too sharp.
|
||||
# 4 Triangles connecting to a square creates a 'frustum'.
|
||||
|
||||
# Vertices for a standard 1m equilateral (placeholder for now, can be tweaked for specific radii)
|
||||
var h = sqrt(3) * 0.5
|
||||
var v0 = Vector3(-0.5, 0, 0)
|
||||
var v1 = Vector3(0.5, 0, 0)
|
||||
var v2 = Vector3(0, -h, 0)
|
||||
res.vertices = [v0, v1, v2] as Array[Vector3]
|
||||
|
||||
# Top Edge (v0->v1): Connects to Square.
|
||||
# The square is tilted down by 'slope'. To match it, we must tilt 'up' or 'down'?
|
||||
# Normals must oppose. Square normal is Tilted Down. This normal must be Tilted Down (relative to self) to be parallel?
|
||||
# Actually, both pieces tilt "in" towards the center of the sphere.
|
||||
_add_edge_mount(res, v0, v1, slope_angle)
|
||||
|
||||
# Side Edges (v1->v2, v2->v0): Connect to other triangles in the skirt.
|
||||
# These usually need a smaller bend angle, approx half the square's bend for a smooth transition.
|
||||
var side_bend = slope_angle * 0.5 # Approximation
|
||||
_add_edge_mount(res, v1, v2, side_bend)
|
||||
_add_edge_mount(res, v2, v0, side_bend)
|
||||
|
||||
_finalize_resource(res, prefix + "_side")
|
||||
|
||||
# --- HELPERS ---
|
||||
|
||||
func _create_base_resource(id: String, suffix: String) -> StructureData:
|
||||
var res = StructureData.new()
|
||||
res.piece_name = id.capitalize()
|
||||
res.type = StructureData.PieceType.PLATE
|
||||
return res
|
||||
|
||||
func _add_edge_mount(res: StructureData, p1: Vector3, p2: Vector3, bend_deg: float):
|
||||
var mid = (p1 + p2) / 2.0
|
||||
var edge_vector = (p2 - p1).normalized()
|
||||
# Flat normal points -Z (Back) or +Z depending on convention. Using BACK (+Z in Godot) as "Out"
|
||||
var flat_normal = edge_vector.cross(Vector3.BACK).normalized()
|
||||
|
||||
# Rotate normal "Down" around the edge
|
||||
var bend_rad = deg_to_rad(bend_deg)
|
||||
var final_normal = flat_normal.rotated(edge_vector, bend_rad)
|
||||
var final_up = Vector3.BACK.rotated(edge_vector, bend_rad)
|
||||
|
||||
res.add_mount(mid, final_normal, final_up)
|
||||
|
||||
func _finalize_resource(res: StructureData, filename: String):
|
||||
# Calculate Area for Mass/Cost
|
||||
var area = 0.0
|
||||
if res.vertices.size() >= 3:
|
||||
# Shoelace formula or simple triangle sum
|
||||
# For convex shapes centered on 0,0:
|
||||
for i in range(res.vertices.size()):
|
||||
var p1 = res.vertices[i]
|
||||
var p2 = res.vertices[(i + 1) % res.vertices.size()]
|
||||
area += 0.5 * (p1.cross(p2).length())
|
||||
|
||||
res.base_mass = area * DENSITY_ALUMINUM
|
||||
res.cost = {"Aluminium": res.base_mass * COST_PER_KG}
|
||||
|
||||
var path = "res://data/structure/definitions/%s.tres" % filename
|
||||
ResourceSaver.save(res, path)
|
||||
# print("Generated %s (Mass: %.1f kg)" % [filename, res.base_mass])
|
||||
|
||||
func generate_system_two_pentagonal():
|
||||
print("--- Generating Design System 2: Pentagonal ---")
|
||||
|
||||
# Configuration: 2m Radius Sphere
|
||||
# Icosahedron Edge Length (a) for radius (r): a = r / sin(72) * 2 approx...
|
||||
# Let's standardise on the edge length = 1.0m.
|
||||
# This results in a sphere radius of ~0.95m.
|
||||
var edge_length = 1.0
|
||||
|
||||
# 1. THE TUBE (Pentagonal Antiprism)
|
||||
# A tube made of 10 triangles per segment.
|
||||
# To fit a regular pentagon of side 1.0m.
|
||||
# Radius of pentagon = 1.0 / (2 * sin(36)) = ~0.85m
|
||||
|
||||
# We need a triangle that connects two points on the bottom pentagon
|
||||
# to one point on the top pentagon (rotated 36 degrees).
|
||||
# This forms an equilateral triangle if the height is correct (0.85m).
|
||||
create_polygon_plate("s2_equilateral_tri", 3, 0.0) # Standard 1m triangle
|
||||
|
||||
# 2. THE SPHERE CAP (Pentagonal Pyramid)
|
||||
# 5 of these triangles snap together to form a "Cap".
|
||||
# The "bend" angle is the dihedral angle of an Icosahedron ~138.19 deg.
|
||||
# Deviation from flat = (180 - 138.19) / 2 = ~20.9 degrees.
|
||||
|
||||
var bend_angle = 20.9
|
||||
|
||||
var res = _create_base_resource("s2_geo_tri", "Geo Plate")
|
||||
res.shape = "Triangle"
|
||||
res.vertices = _generate_equilateral_verts(1.0)
|
||||
|
||||
# Base Edge (0->1): Connects to the rest of the sphere (or extension ring)
|
||||
# Side Edges (1->2, 2->0): Connect to neighbors in the 5-way cluster
|
||||
|
||||
# All edges in a V1 sphere have the same bend angle!
|
||||
_add_edge_mount(res, res.vertices[0], res.vertices[1], bend_angle)
|
||||
_add_edge_mount(res, res.vertices[1], res.vertices[2], bend_angle)
|
||||
_add_edge_mount(res, res.vertices[2], res.vertices[0], bend_angle)
|
||||
|
||||
_finalize_resource(res, "s2_geo_tri")
|
||||
|
||||
print("System 2 Generated. Build tubes with 's2_equilateral_tri' and spheres with 's2_geo_tri'.")
|
||||
|
||||
func _generate_equilateral_verts(side: float) -> Array[Vector3]:
|
||||
var h = sqrt(3) * 0.5 * side
|
||||
return [
|
||||
Vector3(-side/2, -h/3, 0),
|
||||
Vector3(side/2, -h/3, 0),
|
||||
Vector3(0, 2*h/3, 0)
|
||||
]
|
||||
# src/data/structure/structure_generator.gd
|
||||
|
||||
func generate_system_two_v2_sphere():
|
||||
print("--- Generating Design System 2: V2 Geodesic (Room Size) ---")
|
||||
|
||||
# 1. Calculate Geometry (Normalized Radius = 1.0)
|
||||
var phi = (1.0 + sqrt(5.0)) / 2.0
|
||||
|
||||
# Icosahedron vertices
|
||||
var v0 = Vector3(0, 1, phi).normalized() # Pole
|
||||
var v4 = Vector3(1, phi, 0).normalized() # Neighbor
|
||||
var v8 = Vector3(phi, 0, 1).normalized() # Neighbor
|
||||
|
||||
# Subdivide for V2 (Midpoints projected to sphere)
|
||||
var v08 = (v0 + v8).normalized()
|
||||
var v84 = (v8 + v4).normalized()
|
||||
var v40 = (v4 + v0).normalized()
|
||||
|
||||
# We now have two distinct triangles:
|
||||
# Triangle A (Cap): v0 -> v08 -> v40
|
||||
# Triangle B (Face): v08 -> v84 -> v40
|
||||
|
||||
# 2. Scale Factor
|
||||
# We want the "Base" of Triangle A (edge v08-v40) to be exactly 1.0m.
|
||||
# This ensures it connects perfectly to our standard 1.0m Tubes.
|
||||
var unscaled_base_len = v08.distance_to(v40)
|
||||
var scale = 1.0 / unscaled_base_len
|
||||
|
||||
print("V2 Sphere Radius: %.2fm" % scale)
|
||||
|
||||
# 3. Generate Triangle A (The Pentagon Cap Piece)
|
||||
# This piece forms the 5-way corners.
|
||||
var res_a = _create_base_resource("s2_geo_v2_a", "Geo V2 Cap")
|
||||
res_a.shape = "Triangle"
|
||||
# Centering: Move vertices so the average is at (0,0,0)
|
||||
var center_a = (v0 + v08 + v40) / 3.0
|
||||
res_a.vertices = [
|
||||
(v0 - center_a) * scale, # Top (Pole)
|
||||
(v08 - center_a) * scale, # Right
|
||||
(v40 - center_a) * scale # Left
|
||||
] as Array[Vector3]
|
||||
|
||||
# Calculate exact bend angles based on the sphere normals
|
||||
# The mount normal should be the vertex normal (pointing out from sphere center)
|
||||
# relative to the flat face normal.
|
||||
_add_mount_from_sphere_geometry(res_a, v0, v08, v40, center_a)
|
||||
_finalize_resource(res_a, "s2_geo_v2_a")
|
||||
|
||||
# 4. Generate Triangle B (The Hexagon Face Piece)
|
||||
# This piece fills the gaps between caps.
|
||||
var res_b = _create_base_resource("s2_geo_v2_b", "Geo V2 Face")
|
||||
res_b.shape = "Triangle"
|
||||
var center_b = (v08 + v84 + v40) / 3.0
|
||||
res_b.vertices = [
|
||||
(v08 - center_b) * scale, # Top-Left
|
||||
(v84 - center_b) * scale, # Bottom
|
||||
(v40 - center_b) * scale # Top-Right
|
||||
] as Array[Vector3]
|
||||
|
||||
_add_mount_from_sphere_geometry(res_b, v08, v84, v40, center_b)
|
||||
_finalize_resource(res_b, "s2_geo_v2_b")
|
||||
|
||||
# Helper to calculate the correct mount angle for a spherical fragment
|
||||
func _add_mount_from_sphere_geometry(res: StructureData, p1_sphere: Vector3, p2_sphere: Vector3, p3_sphere: Vector3, center_sphere: Vector3):
|
||||
# We reconstruct the mounts for the 3 edges
|
||||
var points = [p1_sphere, p2_sphere, p3_sphere]
|
||||
|
||||
# Face Normal (Flat plate orientation)
|
||||
var face_normal = (p2_sphere - p1_sphere).cross(p3_sphere - p1_sphere).normalized()
|
||||
|
||||
for i in range(3):
|
||||
var a = points[i]
|
||||
var b = points[(i+1)%3]
|
||||
|
||||
# The mount position is the midpoint of the edge (relative to piece center)
|
||||
var mid_sphere = (a + b) / 2.0
|
||||
var mid_local = (mid_sphere - center_sphere) # Scale is applied later in the main loop, but directions don't care about scale
|
||||
|
||||
# The mount normal should point OUTWARD from the edge, but follow the sphere's curvature.
|
||||
# For a sphere, the perfect "Out" vector at the edge midpoint is just mid_sphere.normalized().
|
||||
# However, our mount system expects the normal to be roughly perpendicular to the edge.
|
||||
|
||||
var edge_vec = (b - a).normalized()
|
||||
# Vector perpendicular to edge, tangent to sphere surface at midpoint
|
||||
var sphere_tangent_out = edge_vec.cross(mid_sphere.normalized()).normalized()
|
||||
|
||||
# Wait, the mount normal needs to match the *other* piece's mount normal.
|
||||
# If both pieces are on the sphere, their mount normals should be parallel to the chord connecting them?
|
||||
# No, standard "snap" logic opposes normals.
|
||||
# If we use the Tangent, it points "along" the sphere surface.
|
||||
# When two pieces snap, they will form a continuous curve.
|
||||
|
||||
# Let's stick to the generated tangents.
|
||||
# We need to rotate this into the Local Space of the piece.
|
||||
# Actually, we are defining vertices in Local Space already.
|
||||
# But the normals calculated above are in Sphere Space.
|
||||
|
||||
# We need to rotate the calculated Sphere Normals into the Flat Face space?
|
||||
# No, StructureData mounts are defined in Local Space.
|
||||
# The Vertices in res.vertices are already (p - center).
|
||||
|
||||
# So:
|
||||
# Position: (mid_sphere - center_sphere) * scale (handled in main loop, we just need direction here)
|
||||
# Normal: sphere_tangent_out (It's a direction vector, translation doesn't affect it)
|
||||
# Up: The sphere normal at that point? (mid_sphere.normalized())
|
||||
|
||||
# Let's assume 'Up' is the surface normal (Out from center of sphere)
|
||||
var mount_up = mid_sphere.normalized()
|
||||
|
||||
res.add_mount((mid_sphere - center_sphere), sphere_tangent_out, mount_up)
|
||||
1
src/data/structure/structure_generator.gd.uid
Normal file
1
src/data/structure/structure_generator.gd.uid
Normal file
@ -0,0 +1 @@
|
||||
uid://bkqqditmq34y3
|
||||
67
src/export_presets.cfg
Normal file
67
src/export_presets.cfg
Normal file
@ -0,0 +1,67 @@
|
||||
[preset.0]
|
||||
|
||||
name="Windows Desktop"
|
||||
platform="Windows Desktop"
|
||||
runnable=true
|
||||
advanced_options=true
|
||||
dedicated_server=false
|
||||
custom_features=""
|
||||
export_filter="all_resources"
|
||||
include_filter=""
|
||||
exclude_filter=""
|
||||
export_path="../export/moa.exe"
|
||||
patches=PackedStringArray()
|
||||
encryption_include_filters=""
|
||||
encryption_exclude_filters=""
|
||||
seed=0
|
||||
encrypt_pck=false
|
||||
encrypt_directory=false
|
||||
script_export_mode=2
|
||||
|
||||
[preset.0.options]
|
||||
|
||||
custom_template/debug=""
|
||||
custom_template/release=""
|
||||
debug/export_console_wrapper=1
|
||||
binary_format/embed_pck=true
|
||||
texture_format/s3tc_bptc=true
|
||||
texture_format/etc2_astc=false
|
||||
shader_baker/enabled=false
|
||||
binary_format/architecture="x86_64"
|
||||
codesign/enable=false
|
||||
codesign/timestamp=true
|
||||
codesign/timestamp_server_url=""
|
||||
codesign/digest_algorithm=1
|
||||
codesign/description=""
|
||||
codesign/custom_options=PackedStringArray()
|
||||
application/modify_resources=true
|
||||
application/icon=""
|
||||
application/console_wrapper_icon=""
|
||||
application/icon_interpolation=4
|
||||
application/file_version=""
|
||||
application/product_version=""
|
||||
application/company_name=""
|
||||
application/product_name=""
|
||||
application/file_description=""
|
||||
application/copyright=""
|
||||
application/trademarks=""
|
||||
application/export_angle=0
|
||||
application/export_d3d12=0
|
||||
application/d3d12_agility_sdk_multiarch=true
|
||||
ssh_remote_deploy/enabled=false
|
||||
ssh_remote_deploy/host="user@host_ip"
|
||||
ssh_remote_deploy/port="22"
|
||||
ssh_remote_deploy/extra_args_ssh=""
|
||||
ssh_remote_deploy/extra_args_scp=""
|
||||
ssh_remote_deploy/run_script="Expand-Archive -LiteralPath '{temp_dir}\\{archive_name}' -DestinationPath '{temp_dir}'
|
||||
$action = New-ScheduledTaskAction -Execute '{temp_dir}\\{exe_name}' -Argument '{cmd_args}'
|
||||
$trigger = New-ScheduledTaskTrigger -Once -At 00:00
|
||||
$settings = New-ScheduledTaskSettingsSet -AllowStartIfOnBatteries -DontStopIfGoingOnBatteries
|
||||
$task = New-ScheduledTask -Action $action -Trigger $trigger -Settings $settings
|
||||
Register-ScheduledTask godot_remote_debug -InputObject $task -Force:$true
|
||||
Start-ScheduledTask -TaskName godot_remote_debug
|
||||
while (Get-ScheduledTask -TaskName godot_remote_debug | ? State -eq running) { Start-Sleep -Milliseconds 100 }
|
||||
Unregister-ScheduledTask -TaskName godot_remote_debug -Confirm:$false -ErrorAction:SilentlyContinue"
|
||||
ssh_remote_deploy/cleanup_script="Stop-ScheduledTask -TaskName godot_remote_debug -ErrorAction:SilentlyContinue
|
||||
Unregister-ScheduledTask -TaskName godot_remote_debug -Confirm:$false -ErrorAction:SilentlyContinue
|
||||
Remove-Item -Recurse -Force '{temp_dir}'"
|
||||
|
Before Width: | Height: | Size: 994 B After Width: | Height: | Size: 994 B |
@ -18,6 +18,8 @@ dest_files=["res://.godot/imported/icon.svg-218a8f2b3041327d8a5756f3a245f83b.cte
|
||||
compress/mode=0
|
||||
compress/high_quality=false
|
||||
compress/lossy_quality=0.7
|
||||
compress/uastc_level=0
|
||||
compress/rdo_quality_loss=0.0
|
||||
compress/hdr_compression=1
|
||||
compress/normal_map=0
|
||||
compress/channel_pack=0
|
||||
@ -25,6 +27,10 @@ mipmaps/generate=false
|
||||
mipmaps/limit=-1
|
||||
roughness/mode=0
|
||||
roughness/src_normal=""
|
||||
process/channel_remap/red=0
|
||||
process/channel_remap/green=1
|
||||
process/channel_remap/blue=2
|
||||
process/channel_remap/alpha=3
|
||||
process/fix_alpha_border=true
|
||||
process/premult_alpha=false
|
||||
process/normal_map_invert_y=false
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user