Move to physics based climbing

This commit is contained in:
olof.pettersson
2025-10-30 17:29:09 +01:00
parent 7d7580a123
commit 29f9bccfd3
2 changed files with 88 additions and 65 deletions

View File

@ -56,7 +56,6 @@ func _physics_process(delta: float):
# 1. Apply Mouse Rotation (Universal head look)
_apply_mouse_rotation()
if eva_suit_component:
# Stabilization is handled within eva_suit_component.process_movement
eva_suit_component.process_movement(delta, _move_input, _vertical_input, _roll_input, _r_click_input)

View File

@ -75,9 +75,9 @@ func process_movement(delta: float, move_input: Vector2, roll_input: float, reac
MovementState.REACHING:
_process_reaching(delta)
MovementState.GRIPPING:
_process_gripping(delta, roll_input)
_apply_grip_physics(delta, move_input, roll_input)
MovementState.CLIMBING:
_process_climbing(delta, move_input)
_apply_climb_physics(delta, move_input)
MovementState.CHARGING_LAUNCH:
_handle_launch_charge(delta)
@ -158,87 +158,111 @@ func _process_reaching(_delta: float):
# When close enough: state = MovementState.GRIPPING
pass
func _process_gripping(delta: float, roll_input: float):
if not is_instance_valid(pawn) or not is_instance_valid(current_grip): # Safety check
_cancel_reach() # Transition out if grip or pawn is invalid
return
# 1. Dampen Existing Motion
pawn.velocity = pawn.velocity.lerp(Vector3.ZERO, delta * gripping_linear_damping)
pawn.angular_velocity = pawn.angular_velocity.lerp(Vector3.ZERO, delta * gripping_angular_damping)
# Stop completely if very slow, prevents jitter
if pawn.velocity.length_squared() < 0.001:
pawn.velocity = Vector3.ZERO
if pawn.angular_velocity.length_squared() < 0.001:
pawn.angular_velocity = Vector3.ZERO
# 2. Move Pawn Towards Grip Position (lerp)
var grip_base_transform = current_grip.get_grip_transform(pawn.global_position)
# --- Calculate Offset ---
# Calculate the final target position with the offset
var grip_in_direction = grip_base_transform.basis.z.normalized()
var target_position = grip_base_transform.origin + grip_in_direction * _get_hold_distance()
# --- End Offset Calculation ---
pawn.global_transform.origin = pawn.global_transform.origin.lerp(target_position, delta * reach_speed)
func _apply_grip_physics(delta: float, move_input: Vector2, roll_input: float):
if not is_instance_valid(pawn) or not is_instance_valid(current_grip):
_release_current_grip(); return
# 3. Orient Pawn Towards Grip Orientation (slerp)
# Make the pawn smoothly rotate to match the grip's desired orientation
if not is_zero_approx(roll_input):
pawn.rotate(current_grip.global_basis.z, -roll_input * gripping_orient_speed * delta)
pass
else:
var chosen_basis = _choose_grip_orientation(current_grip.global_basis)
pawn.global_transform.basis = pawn.global_transform.basis.slerp(chosen_basis, delta * gripping_orient_speed)
# TODO: Later, replace step 2 and 3 with IK driving the hand bone to the target_transform.origin,
# while the physics/orientation logic stops the main body's momentum.
# --- 1. Calculate Target Transform (Same as before) ---
var grip_base_transform = current_grip.global_transform
var target_direction = grip_base_transform.basis.z.normalized()
var hold_distance = _get_hold_distance()
var target_position = grip_base_transform.origin + target_direction * hold_distance
var grip_up_vector = grip_base_transform.basis.y.normalized()
var grip_down_vector = -grip_base_transform.basis.y.normalized()
var pawn_up_vector = pawn.global_transform.basis.y
var dot_up = pawn_up_vector.dot(grip_up_vector)
var dot_down = pawn_up_vector.dot(grip_down_vector)
var chosen_orientation_up_vector = grip_up_vector if dot_up >= dot_down else grip_down_vector
var target_basis = Basis.looking_at(-target_direction, chosen_orientation_up_vector).orthonormalized()
func _process_climbing(delta: float, move_input: Vector2):
# --- 2. Apply Linear Force (PD Controller) ---
var error_pos = target_position - pawn.global_position
# Simple P-controller for velocity (acts as a spring)
var target_velocity_pos = error_pos * gripping_linear_damping # 'damping' here acts as Kp
# Simple D-controller (damping)
target_velocity_pos -= pawn.velocity * gripping_angular_damping # 'angular_damping' here acts as Kd
# Apply force via acceleration
pawn.velocity = pawn.velocity.lerp(target_velocity_pos, delta * 10.0) # Smoothly apply correction
# --- 3. Apply Angular Force (PD Controller) ---
if not is_zero_approx(roll_input):
# Manual Roll Input (applies torque)
var roll_torque_global = pawn.global_transform.basis.z * (-roll_input) * gripping_orient_speed # Use global Z
pawn.add_torque(roll_torque_global, delta)
else:
# Auto-Orient (PD Controller)
var current_quat = pawn.global_transform.basis.get_rotation_quaternion()
var target_quat = target_basis.get_rotation_quaternion()
var error_quat = target_quat * current_quat.inverse()
var error_angle = error_quat.get_angle()
var error_axis = error_quat.get_axis()
# Proportional torque (spring)
var torque_proportional = error_axis.normalized() * error_angle * gripping_orient_speed # 'speed' acts as Kp
# Derivative torque (damping)
var torque_derivative = -pawn.angular_velocity * gripping_angular_damping # 'damping' acts as Kd
var total_torque_global = (torque_proportional + torque_derivative)
pawn.add_torque(total_torque_global, delta)
func _apply_climb_physics(delta: float, move_input: Vector2):
if not is_instance_valid(pawn) or not is_instance_valid(current_grip):
_stop_climb(true) # Safety check
return
_stop_climb(true); return
var climb_direction = move_input.y * pawn.global_basis.y + move_input.x * pawn.global_basis.x
climb_direction = climb_direction.normalized()
# 1. Calculate Climb Direction (same as _start_climb)
var pawn_forward = -pawn.global_transform.basis.z
var pawn_right = pawn.global_transform.basis.x
climb_direction_world = (pawn_forward * -move_input.y + pawn_right * move_input.x).normalized()
# 1. Accelerate towards climb speed in the climb direction
var target_velocity = climb_direction * climb_speed
pawn.velocity = pawn.velocity.lerp(target_velocity, delta * climb_acceleration)
pawn.angular_velocity = pawn.angular_velocity.lerp(Vector3.ZERO, delta * gripping_angular_damping) # Dampen spin while climbing
# 2. Find the next potential grip in the climb direction
next_grip_target = _find_best_grip(climb_direction) # Use world direction
# 2. Find Next Grip
next_grip_target = _find_best_grip(climb_direction_world, INF, climb_angle_threshold_deg)
# 3. Check for Handover
var performed_handover = false
if is_instance_valid(next_grip_target):
performed_handover = _perform_grip_handover()
var next_grip_pos = next_grip_target.global_position
var dist_sq_to_next = pawn.global_position.distance_squared_to(next_grip_pos)
if dist_sq_to_next < grip_handover_distance * grip_handover_distance:
performed_handover = _perform_grip_handover()
# 4. Check for Release Past Grip (if no handover)
if not performed_handover:
var current_grip_pos = current_grip.global_position
var vector_from_grip_to_pawn = pawn.global_position - current_grip_pos
# Project this vector onto the climb direction
var distance_along_climb_dir = vector_from_grip_to_pawn.dot(climb_direction_world)
if distance_along_climb_dir > 0.2: # Release threshold
_release_current_grip()
return # State changed to IDLE
# If pawn is further along climb direction than the threshold past the grip's origin
if distance_along_climb_dir > release_past_grip_threshold:
print("Climbed past current grip without handover. Releasing.")
_release_current_grip() # This sets state to IDLE
# Apply slight brake on release
pawn.velocity = pawn.velocity.lerp(Vector3.ZERO, 0.2)
return # Exit early as state changed
# 5. Apply Movement Force
var target_velocity = climb_direction_world * climb_speed
pawn.velocity = pawn.velocity.lerp(target_velocity, delta * climb_acceleration)
# 4. (Optional) Maintain Orientation relative to current grip or next target?
# Only lerp origin slightly to allow movement, prioritize basis slerp
# pawn.global_transform.origin = pawn.global_transform.origin.lerp(target_transform.origin + target_transform.basis.z * _get_hold_distance(), delta * reach_speed * 0.5) # Slower position lerp
pawn.global_transform.basis = pawn.global_transform.basis.slerp(_choose_grip_orientation(current_grip.global_basis), delta * gripping_orient_speed)
# 6. Apply Angular Force (Auto-Orient to current grip)
var grip_base_transform = current_grip.global_transform
var target_direction = grip_base_transform.basis.z.normalized()
var grip_up_vector = grip_base_transform.basis.y.normalized()
var grip_down_vector = -grip_base_transform.basis.y.normalized()
var pawn_up_vector = pawn.global_transform.basis.y
var dot_up = pawn_up_vector.dot(grip_up_vector)
var dot_down = pawn_up_vector.dot(grip_down_vector)
var chosen_orientation_up_vector = grip_up_vector if dot_up >= dot_down else grip_down_vector
var target_basis = Basis.looking_at(-target_direction, chosen_orientation_up_vector).orthonormalized()
var current_quat = pawn.global_transform.basis.get_rotation_quaternion()
var target_quat = target_basis.get_rotation_quaternion()
var error_quat = target_quat * current_quat.inverse()
var error_angle = error_quat.get_angle()
var error_axis = error_quat.get_axis()
var torque_proportional = error_axis.normalized() * error_angle * gripping_orient_speed
var torque_derivative = -pawn.angular_velocity * gripping_angular_damping
var total_torque_global = (torque_proportional + torque_derivative)
pawn.add_torque(total_torque_global, delta)
# --- Grip Helpers
# Attempts to find and grab the best available grip within range