Merge pull request #106346 from mihe/jolt/scu-support

Fix SCU build issues related to Jolt Physics
This commit is contained in:
Thaddeus Crews
2025-05-13 16:22:26 -05:00
10 changed files with 185 additions and 185 deletions

View File

@ -38,9 +38,9 @@
namespace {
constexpr double DEFAULT_BIAS = 0.3;
constexpr double DEFAULT_SOFTNESS = 0.8;
constexpr double DEFAULT_RELAXATION = 1.0;
constexpr double CONE_TWIST_DEFAULT_BIAS = 0.3;
constexpr double CONE_TWIST_DEFAULT_SOFTNESS = 0.8;
constexpr double CONE_TWIST_DEFAULT_RELAXATION = 1.0;
} // namespace
@ -168,13 +168,13 @@ double JoltConeTwistJoint3D::get_param(PhysicsServer3D::ConeTwistJointParam p_pa
return twist_limit_span;
}
case PhysicsServer3D::CONE_TWIST_JOINT_BIAS: {
return DEFAULT_BIAS;
return CONE_TWIST_DEFAULT_BIAS;
}
case PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS: {
return DEFAULT_SOFTNESS;
return CONE_TWIST_DEFAULT_SOFTNESS;
}
case PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION: {
return DEFAULT_RELAXATION;
return CONE_TWIST_DEFAULT_RELAXATION;
}
default: {
ERR_FAIL_V_MSG(0.0, vformat("Unhandled cone twist joint parameter: '%d'. This should not happen. Please report this.", p_param));
@ -193,17 +193,17 @@ void JoltConeTwistJoint3D::set_param(PhysicsServer3D::ConeTwistJointParam p_para
_limits_changed();
} break;
case PhysicsServer3D::CONE_TWIST_JOINT_BIAS: {
if (!Math::is_equal_approx(p_value, DEFAULT_BIAS)) {
if (!Math::is_equal_approx(p_value, CONE_TWIST_DEFAULT_BIAS)) {
WARN_PRINT(vformat("Cone twist joint bias is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::CONE_TWIST_JOINT_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, CONE_TWIST_DEFAULT_SOFTNESS)) {
WARN_PRINT(vformat("Cone twist joint softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::CONE_TWIST_JOINT_RELAXATION: {
if (!Math::is_equal_approx(p_value, DEFAULT_RELAXATION)) {
if (!Math::is_equal_approx(p_value, CONE_TWIST_DEFAULT_RELAXATION)) {
WARN_PRINT(vformat("Cone twist joint relaxation is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;

View File

@ -38,15 +38,15 @@
namespace {
constexpr double DEFAULT_LINEAR_LIMIT_SOFTNESS = 0.7;
constexpr double DEFAULT_LINEAR_RESTITUTION = 0.5;
constexpr double DEFAULT_LINEAR_DAMPING = 1.0;
constexpr double G6DOF_DEFAULT_LINEAR_LIMIT_SOFTNESS = 0.7;
constexpr double G6DOF_DEFAULT_LINEAR_RESTITUTION = 0.5;
constexpr double G6DOF_DEFAULT_LINEAR_DAMPING = 1.0;
constexpr double DEFAULT_ANGULAR_LIMIT_SOFTNESS = 0.5;
constexpr double DEFAULT_ANGULAR_DAMPING = 1.0;
constexpr double DEFAULT_ANGULAR_RESTITUTION = 0.0;
constexpr double DEFAULT_ANGULAR_FORCE_LIMIT = 0.0;
constexpr double DEFAULT_ANGULAR_ERP = 0.5;
constexpr double G6DOF_DEFAULT_ANGULAR_LIMIT_SOFTNESS = 0.5;
constexpr double G6DOF_DEFAULT_ANGULAR_DAMPING = 1.0;
constexpr double G6DOF_DEFAULT_ANGULAR_RESTITUTION = 0.0;
constexpr double G6DOF_DEFAULT_ANGULAR_FORCE_LIMIT = 0.0;
constexpr double G6DOF_DEFAULT_ANGULAR_ERP = 0.5;
} // namespace
@ -271,13 +271,13 @@ double JoltGeneric6DOFJoint3D::get_param(Axis p_axis, Param p_param) const {
return limit_upper[axis_lin];
}
case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {
return DEFAULT_LINEAR_LIMIT_SOFTNESS;
return G6DOF_DEFAULT_LINEAR_LIMIT_SOFTNESS;
}
case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: {
return DEFAULT_LINEAR_RESTITUTION;
return G6DOF_DEFAULT_LINEAR_RESTITUTION;
}
case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: {
return DEFAULT_LINEAR_DAMPING;
return G6DOF_DEFAULT_LINEAR_DAMPING;
}
case PhysicsServer3D::G6DOF_JOINT_LINEAR_MOTOR_TARGET_VELOCITY: {
return motor_speed[axis_lin];
@ -301,19 +301,19 @@ double JoltGeneric6DOFJoint3D::get_param(Axis p_axis, Param p_param) const {
return limit_upper[axis_ang];
}
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {
return DEFAULT_ANGULAR_LIMIT_SOFTNESS;
return G6DOF_DEFAULT_ANGULAR_LIMIT_SOFTNESS;
}
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: {
return DEFAULT_ANGULAR_DAMPING;
return G6DOF_DEFAULT_ANGULAR_DAMPING;
}
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: {
return DEFAULT_ANGULAR_RESTITUTION;
return G6DOF_DEFAULT_ANGULAR_RESTITUTION;
}
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {
return DEFAULT_ANGULAR_FORCE_LIMIT;
return G6DOF_DEFAULT_ANGULAR_FORCE_LIMIT;
}
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: {
return DEFAULT_ANGULAR_ERP;
return G6DOF_DEFAULT_ANGULAR_ERP;
}
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: {
return motor_speed[axis_ang];
@ -350,17 +350,17 @@ void JoltGeneric6DOFJoint3D::set_param(Axis p_axis, Param p_param, double p_valu
_limits_changed();
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_LIMIT_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, G6DOF_DEFAULT_LINEAR_LIMIT_SOFTNESS)) {
WARN_PRINT(vformat("6DOF joint linear limit softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_RESTITUTION)) {
if (!Math::is_equal_approx(p_value, G6DOF_DEFAULT_LINEAR_RESTITUTION)) {
WARN_PRINT(vformat("6DOF joint linear restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::G6DOF_JOINT_LINEAR_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_DAMPING)) {
if (!Math::is_equal_approx(p_value, G6DOF_DEFAULT_LINEAR_DAMPING)) {
WARN_PRINT(vformat("6DOF joint linear damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
@ -393,27 +393,27 @@ void JoltGeneric6DOFJoint3D::set_param(Axis p_axis, Param p_param, double p_valu
_limits_changed();
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, G6DOF_DEFAULT_ANGULAR_LIMIT_SOFTNESS)) {
WARN_PRINT(vformat("6DOF joint angular limit softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_DAMPING)) {
if (!Math::is_equal_approx(p_value, G6DOF_DEFAULT_ANGULAR_DAMPING)) {
WARN_PRINT(vformat("6DOF joint angular damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_RESTITUTION)) {
if (!Math::is_equal_approx(p_value, G6DOF_DEFAULT_ANGULAR_RESTITUTION)) {
WARN_PRINT(vformat("6DOF joint angular restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_FORCE_LIMIT)) {
if (!Math::is_equal_approx(p_value, G6DOF_DEFAULT_ANGULAR_FORCE_LIMIT)) {
WARN_PRINT(vformat("6DOF joint angular force limit is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::G6DOF_JOINT_ANGULAR_ERP: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_ERP)) {
if (!Math::is_equal_approx(p_value, G6DOF_DEFAULT_ANGULAR_ERP)) {
WARN_PRINT(vformat("6DOF joint angular ERP is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;

View File

@ -41,10 +41,10 @@
namespace {
constexpr double DEFAULT_BIAS = 0.3;
constexpr double DEFAULT_LIMIT_BIAS = 0.3;
constexpr double DEFAULT_SOFTNESS = 0.9;
constexpr double DEFAULT_RELAXATION = 1.0;
constexpr double HINGE_DEFAULT_BIAS = 0.3;
constexpr double HINGE_DEFAULT_LIMIT_BIAS = 0.3;
constexpr double HINGE_DEFAULT_SOFTNESS = 0.9;
constexpr double HINGE_DEFAULT_RELAXATION = 1.0;
double estimate_physics_step() {
Engine *engine = Engine::get_singleton();
@ -171,7 +171,7 @@ JoltHingeJoint3D::JoltHingeJoint3D(const JoltJoint3D &p_old_joint, JoltBody3D *p
double JoltHingeJoint3D::get_param(Parameter p_param) const {
switch (p_param) {
case PhysicsServer3D::HINGE_JOINT_BIAS: {
return DEFAULT_BIAS;
return HINGE_DEFAULT_BIAS;
}
case PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER: {
return limit_upper;
@ -180,13 +180,13 @@ double JoltHingeJoint3D::get_param(Parameter p_param) const {
return limit_lower;
}
case PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS: {
return DEFAULT_LIMIT_BIAS;
return HINGE_DEFAULT_LIMIT_BIAS;
}
case PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS: {
return DEFAULT_SOFTNESS;
return HINGE_DEFAULT_SOFTNESS;
}
case PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION: {
return DEFAULT_RELAXATION;
return HINGE_DEFAULT_RELAXATION;
}
case PhysicsServer3D::HINGE_JOINT_MOTOR_TARGET_VELOCITY: {
return motor_target_speed;
@ -204,7 +204,7 @@ double JoltHingeJoint3D::get_param(Parameter p_param) const {
void JoltHingeJoint3D::set_param(Parameter p_param, double p_value) {
switch (p_param) {
case PhysicsServer3D::HINGE_JOINT_BIAS: {
if (!Math::is_equal_approx(p_value, DEFAULT_BIAS)) {
if (!Math::is_equal_approx(p_value, HINGE_DEFAULT_BIAS)) {
WARN_PRINT(vformat("Hinge joint bias is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
@ -217,17 +217,17 @@ void JoltHingeJoint3D::set_param(Parameter p_param, double p_value) {
_limits_changed();
} break;
case PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS: {
if (!Math::is_equal_approx(p_value, DEFAULT_LIMIT_BIAS)) {
if (!Math::is_equal_approx(p_value, HINGE_DEFAULT_LIMIT_BIAS)) {
WARN_PRINT(vformat("Hinge joint bias limit is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, HINGE_DEFAULT_SOFTNESS)) {
WARN_PRINT(vformat("Hinge joint softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION: {
if (!Math::is_equal_approx(p_value, DEFAULT_RELAXATION)) {
if (!Math::is_equal_approx(p_value, HINGE_DEFAULT_RELAXATION)) {
WARN_PRINT(vformat("Hinge joint relaxation is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;

View File

@ -37,7 +37,7 @@
namespace {
constexpr int DEFAULT_SOLVER_PRIORITY = 1;
constexpr int JOINT_DEFAULT_SOLVER_PRIORITY = 1;
} // namespace
@ -173,11 +173,11 @@ void JoltJoint3D::set_enabled(bool p_enabled) {
}
int JoltJoint3D::get_solver_priority() const {
return DEFAULT_SOLVER_PRIORITY;
return JOINT_DEFAULT_SOLVER_PRIORITY;
}
void JoltJoint3D::set_solver_priority(int p_priority) {
if (p_priority != DEFAULT_SOLVER_PRIORITY) {
if (p_priority != JOINT_DEFAULT_SOLVER_PRIORITY) {
WARN_PRINT(vformat("Joint solver priority is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
}

View File

@ -38,9 +38,9 @@
namespace {
constexpr double DEFAULT_BIAS = 0.3;
constexpr double DEFAULT_DAMPING = 1.0;
constexpr double DEFAULT_IMPULSE_CLAMP = 0.0;
constexpr double PIN_DEFAULT_BIAS = 0.3;
constexpr double PIN_DEFAULT_DAMPING = 1.0;
constexpr double PIN_DEFAULT_IMPULSE_CLAMP = 0.0;
} // namespace
@ -82,13 +82,13 @@ void JoltPinJoint3D::set_local_b(const Vector3 &p_local_b) {
double JoltPinJoint3D::get_param(PhysicsServer3D::PinJointParam p_param) const {
switch (p_param) {
case PhysicsServer3D::PIN_JOINT_BIAS: {
return DEFAULT_BIAS;
return PIN_DEFAULT_BIAS;
}
case PhysicsServer3D::PIN_JOINT_DAMPING: {
return DEFAULT_DAMPING;
return PIN_DEFAULT_DAMPING;
}
case PhysicsServer3D::PIN_JOINT_IMPULSE_CLAMP: {
return DEFAULT_IMPULSE_CLAMP;
return PIN_DEFAULT_IMPULSE_CLAMP;
}
default: {
ERR_FAIL_V_MSG(0.0, vformat("Unhandled pin joint parameter: '%d'. This should not happen. Please report this.", p_param));
@ -99,17 +99,17 @@ double JoltPinJoint3D::get_param(PhysicsServer3D::PinJointParam p_param) const {
void JoltPinJoint3D::set_param(PhysicsServer3D::PinJointParam p_param, double p_value) {
switch (p_param) {
case PhysicsServer3D::PIN_JOINT_BIAS: {
if (!Math::is_equal_approx(p_value, DEFAULT_BIAS)) {
if (!Math::is_equal_approx(p_value, PIN_DEFAULT_BIAS)) {
WARN_PRINT(vformat("Pin joint bias is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::PIN_JOINT_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_DAMPING)) {
if (!Math::is_equal_approx(p_value, PIN_DEFAULT_DAMPING)) {
WARN_PRINT(vformat("Pin joint damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::PIN_JOINT_IMPULSE_CLAMP: {
if (!Math::is_equal_approx(p_value, DEFAULT_IMPULSE_CLAMP)) {
if (!Math::is_equal_approx(p_value, PIN_DEFAULT_IMPULSE_CLAMP)) {
WARN_PRINT(vformat("Pin joint impulse clamp is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;

View File

@ -39,31 +39,31 @@
namespace {
constexpr double DEFAULT_LINEAR_LIMIT_SOFTNESS = 1.0;
constexpr double DEFAULT_LINEAR_LIMIT_RESTITUTION = 0.7;
constexpr double DEFAULT_LINEAR_LIMIT_DAMPING = 1.0;
constexpr double SLIDER_DEFAULT_LINEAR_LIMIT_SOFTNESS = 1.0;
constexpr double SLIDER_DEFAULT_LINEAR_LIMIT_RESTITUTION = 0.7;
constexpr double SLIDER_DEFAULT_LINEAR_LIMIT_DAMPING = 1.0;
constexpr double DEFAULT_LINEAR_MOTION_SOFTNESS = 1.0;
constexpr double DEFAULT_LINEAR_MOTION_RESTITUTION = 0.7;
constexpr double DEFAULT_LINEAR_MOTION_DAMPING = 0.0;
constexpr double SLIDER_DEFAULT_LINEAR_MOTION_SOFTNESS = 1.0;
constexpr double SLIDER_DEFAULT_LINEAR_MOTION_RESTITUTION = 0.7;
constexpr double SLIDER_DEFAULT_LINEAR_MOTION_DAMPING = 0.0;
constexpr double DEFAULT_LINEAR_ORTHO_SOFTNESS = 1.0;
constexpr double DEFAULT_LINEAR_ORTHO_RESTITUTION = 0.7;
constexpr double DEFAULT_LINEAR_ORTHO_DAMPING = 1.0;
constexpr double SLIDER_DEFAULT_LINEAR_ORTHO_SOFTNESS = 1.0;
constexpr double SLIDER_DEFAULT_LINEAR_ORTHO_RESTITUTION = 0.7;
constexpr double SLIDER_DEFAULT_LINEAR_ORTHO_DAMPING = 1.0;
constexpr double DEFAULT_ANGULAR_LIMIT_UPPER = 0.0;
constexpr double DEFAULT_ANGULAR_LIMIT_LOWER = 0.0;
constexpr double DEFAULT_ANGULAR_LIMIT_SOFTNESS = 1.0;
constexpr double DEFAULT_ANGULAR_LIMIT_RESTITUTION = 0.7;
constexpr double DEFAULT_ANGULAR_LIMIT_DAMPING = 0.0;
constexpr double SLIDER_DEFAULT_ANGULAR_LIMIT_UPPER = 0.0;
constexpr double SLIDER_DEFAULT_ANGULAR_LIMIT_LOWER = 0.0;
constexpr double SLIDER_DEFAULT_ANGULAR_LIMIT_SOFTNESS = 1.0;
constexpr double SLIDER_DEFAULT_ANGULAR_LIMIT_RESTITUTION = 0.7;
constexpr double SLIDER_DEFAULT_ANGULAR_LIMIT_DAMPING = 0.0;
constexpr double DEFAULT_ANGULAR_MOTION_SOFTNESS = 1.0;
constexpr double DEFAULT_ANGULAR_MOTION_RESTITUTION = 0.7;
constexpr double DEFAULT_ANGULAR_MOTION_DAMPING = 1.0;
constexpr double SLIDER_DEFAULT_ANGULAR_MOTION_SOFTNESS = 1.0;
constexpr double SLIDER_DEFAULT_ANGULAR_MOTION_RESTITUTION = 0.7;
constexpr double SLIDER_DEFAULT_ANGULAR_MOTION_DAMPING = 1.0;
constexpr double DEFAULT_ANGULAR_ORTHO_SOFTNESS = 1.0;
constexpr double DEFAULT_ANGULAR_ORTHO_RESTITUTION = 0.7;
constexpr double DEFAULT_ANGULAR_ORTHO_DAMPING = 1.0;
constexpr double SLIDER_DEFAULT_ANGULAR_ORTHO_SOFTNESS = 1.0;
constexpr double SLIDER_DEFAULT_ANGULAR_ORTHO_RESTITUTION = 0.7;
constexpr double SLIDER_DEFAULT_ANGULAR_ORTHO_DAMPING = 1.0;
} // namespace
@ -187,64 +187,64 @@ double JoltSliderJoint3D::get_param(PhysicsServer3D::SliderJointParam p_param) c
return limit_lower;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: {
return DEFAULT_LINEAR_LIMIT_SOFTNESS;
return SLIDER_DEFAULT_LINEAR_LIMIT_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: {
return DEFAULT_LINEAR_LIMIT_RESTITUTION;
return SLIDER_DEFAULT_LINEAR_LIMIT_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: {
return DEFAULT_LINEAR_LIMIT_DAMPING;
return SLIDER_DEFAULT_LINEAR_LIMIT_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: {
return DEFAULT_LINEAR_MOTION_SOFTNESS;
return SLIDER_DEFAULT_LINEAR_MOTION_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: {
return DEFAULT_LINEAR_MOTION_RESTITUTION;
return SLIDER_DEFAULT_LINEAR_MOTION_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: {
return DEFAULT_LINEAR_MOTION_DAMPING;
return SLIDER_DEFAULT_LINEAR_MOTION_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: {
return DEFAULT_LINEAR_ORTHO_SOFTNESS;
return SLIDER_DEFAULT_LINEAR_ORTHO_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: {
return DEFAULT_LINEAR_ORTHO_RESTITUTION;
return SLIDER_DEFAULT_LINEAR_ORTHO_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: {
return DEFAULT_LINEAR_ORTHO_DAMPING;
return SLIDER_DEFAULT_LINEAR_ORTHO_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: {
return DEFAULT_ANGULAR_LIMIT_UPPER;
return SLIDER_DEFAULT_ANGULAR_LIMIT_UPPER;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: {
return DEFAULT_ANGULAR_LIMIT_LOWER;
return SLIDER_DEFAULT_ANGULAR_LIMIT_LOWER;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: {
return DEFAULT_ANGULAR_LIMIT_SOFTNESS;
return SLIDER_DEFAULT_ANGULAR_LIMIT_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: {
return DEFAULT_ANGULAR_LIMIT_RESTITUTION;
return SLIDER_DEFAULT_ANGULAR_LIMIT_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: {
return DEFAULT_ANGULAR_LIMIT_DAMPING;
return SLIDER_DEFAULT_ANGULAR_LIMIT_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: {
return DEFAULT_ANGULAR_MOTION_SOFTNESS;
return SLIDER_DEFAULT_ANGULAR_MOTION_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: {
return DEFAULT_ANGULAR_MOTION_RESTITUTION;
return SLIDER_DEFAULT_ANGULAR_MOTION_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: {
return DEFAULT_ANGULAR_MOTION_DAMPING;
return SLIDER_DEFAULT_ANGULAR_MOTION_DAMPING;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: {
return DEFAULT_ANGULAR_ORTHO_SOFTNESS;
return SLIDER_DEFAULT_ANGULAR_ORTHO_SOFTNESS;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: {
return DEFAULT_ANGULAR_ORTHO_RESTITUTION;
return SLIDER_DEFAULT_ANGULAR_ORTHO_RESTITUTION;
}
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: {
return DEFAULT_ANGULAR_ORTHO_DAMPING;
return SLIDER_DEFAULT_ANGULAR_ORTHO_DAMPING;
}
default: {
ERR_FAIL_V_MSG(0.0, vformat("Unhandled slider joint parameter: '%d'. This should not happen. Please report this.", p_param));
@ -263,102 +263,102 @@ void JoltSliderJoint3D::set_param(PhysicsServer3D::SliderJointParam p_param, dou
_limits_changed();
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_LIMIT_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_LINEAR_LIMIT_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint linear limit softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_LIMIT_RESTITUTION)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_LINEAR_LIMIT_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint linear limit restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_LIMIT_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_LIMIT_DAMPING)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_LINEAR_LIMIT_DAMPING)) {
WARN_PRINT(vformat("Slider joint linear limit damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_MOTION_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_LINEAR_MOTION_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint linear motion softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_MOTION_RESTITUTION)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_LINEAR_MOTION_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint linear motion restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_MOTION_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_MOTION_DAMPING)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_LINEAR_MOTION_DAMPING)) {
WARN_PRINT(vformat("Slider joint linear motion damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_ORTHO_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_LINEAR_ORTHO_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint linear ortho softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_ORTHO_RESTITUTION)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_LINEAR_ORTHO_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint linear ortho restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_LINEAR_ORTHOGONAL_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_LINEAR_ORTHO_DAMPING)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_LINEAR_ORTHO_DAMPING)) {
WARN_PRINT(vformat("Slider joint linear ortho damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_UPPER: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_UPPER)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_LIMIT_UPPER)) {
WARN_PRINT(vformat("Slider joint angular limits are not supported when using Jolt Physics. Any such value will be ignored. Try using Generic6DOFJoint3D instead. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_LOWER: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_LOWER)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_LIMIT_LOWER)) {
WARN_PRINT(vformat("Slider joint angular limits are not supported when using Jolt Physics. Any such value will be ignored. Try using Generic6DOFJoint3D instead. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_LIMIT_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint angular limit softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_RESTITUTION)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_LIMIT_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint angular limit restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_LIMIT_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_LIMIT_DAMPING)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_LIMIT_DAMPING)) {
WARN_PRINT(vformat("Slider joint angular limit damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_MOTION_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_MOTION_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint angular motion softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_MOTION_RESTITUTION)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_MOTION_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint angular motion restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_MOTION_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_MOTION_DAMPING)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_MOTION_DAMPING)) {
WARN_PRINT(vformat("Slider joint angular motion damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_SOFTNESS: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_ORTHO_SOFTNESS)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_ORTHO_SOFTNESS)) {
WARN_PRINT(vformat("Slider joint angular ortho softness is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_RESTITUTION: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_ORTHO_RESTITUTION)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_ORTHO_RESTITUTION)) {
WARN_PRINT(vformat("Slider joint angular ortho restitution is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;
case PhysicsServer3D::SLIDER_JOINT_ANGULAR_ORTHOGONAL_DAMPING: {
if (!Math::is_equal_approx(p_value, DEFAULT_ANGULAR_ORTHO_DAMPING)) {
if (!Math::is_equal_approx(p_value, SLIDER_DEFAULT_ANGULAR_ORTHO_DAMPING)) {
WARN_PRINT(vformat("Slider joint angular ortho damping is not supported when using Jolt Physics. Any such value will be ignored. This joint connects %s.", _bodies_to_string()));
}
} break;

View File

@ -42,11 +42,11 @@
namespace {
constexpr double DEFAULT_WIND_FORCE_MAGNITUDE = 0.0;
constexpr double DEFAULT_WIND_ATTENUATION_FACTOR = 0.0;
constexpr double AREA_DEFAULT_WIND_MAGNITUDE = 0.0;
constexpr double AREA_DEFAULT_WIND_ATTENUATION = 0.0;
const Vector3 DEFAULT_WIND_SOURCE = Vector3();
const Vector3 DEFAULT_WIND_DIRECTION = Vector3();
const Vector3 AREA_DEFAULT_WIND_SOURCE = Vector3();
const Vector3 AREA_DEFAULT_WIND_DIRECTION = Vector3();
} // namespace
@ -407,16 +407,16 @@ Variant JoltArea3D::get_param(PhysicsServer3D::AreaParameter p_param) const {
return get_priority();
}
case PhysicsServer3D::AREA_PARAM_WIND_FORCE_MAGNITUDE: {
return DEFAULT_WIND_FORCE_MAGNITUDE;
return AREA_DEFAULT_WIND_MAGNITUDE;
}
case PhysicsServer3D::AREA_PARAM_WIND_SOURCE: {
return DEFAULT_WIND_SOURCE;
return AREA_DEFAULT_WIND_SOURCE;
}
case PhysicsServer3D::AREA_PARAM_WIND_DIRECTION: {
return DEFAULT_WIND_DIRECTION;
return AREA_DEFAULT_WIND_DIRECTION;
}
case PhysicsServer3D::AREA_PARAM_WIND_ATTENUATION_FACTOR: {
return DEFAULT_WIND_ATTENUATION_FACTOR;
return AREA_DEFAULT_WIND_ATTENUATION;
}
default: {
ERR_FAIL_V_MSG(Variant(), vformat("Unhandled area parameter: '%d'. This should not happen. Please report this.", p_param));
@ -457,22 +457,22 @@ void JoltArea3D::set_param(PhysicsServer3D::AreaParameter p_param, const Variant
set_priority(p_value);
} break;
case PhysicsServer3D::AREA_PARAM_WIND_FORCE_MAGNITUDE: {
if (!Math::is_equal_approx((double)p_value, DEFAULT_WIND_FORCE_MAGNITUDE)) {
if (!Math::is_equal_approx((double)p_value, AREA_DEFAULT_WIND_MAGNITUDE)) {
WARN_PRINT(vformat("Invalid wind force magnitude for '%s'. Area wind force magnitude is not supported when using Jolt Physics. Any such value will be ignored.", to_string()));
}
} break;
case PhysicsServer3D::AREA_PARAM_WIND_SOURCE: {
if (!((Vector3)p_value).is_equal_approx(DEFAULT_WIND_SOURCE)) {
if (!((Vector3)p_value).is_equal_approx(AREA_DEFAULT_WIND_SOURCE)) {
WARN_PRINT(vformat("Invalid wind source for '%s'. Area wind source is not supported when using Jolt Physics. Any such value will be ignored.", to_string()));
}
} break;
case PhysicsServer3D::AREA_PARAM_WIND_DIRECTION: {
if (!((Vector3)p_value).is_equal_approx(DEFAULT_WIND_DIRECTION)) {
if (!((Vector3)p_value).is_equal_approx(AREA_DEFAULT_WIND_DIRECTION)) {
WARN_PRINT(vformat("Invalid wind direction for '%s'. Area wind direction is not supported when using Jolt Physics. Any such value will be ignored.", to_string()));
}
} break;
case PhysicsServer3D::AREA_PARAM_WIND_ATTENUATION_FACTOR: {
if (!Math::is_equal_approx((double)p_value, DEFAULT_WIND_ATTENUATION_FACTOR)) {
if (!Math::is_equal_approx((double)p_value, AREA_DEFAULT_WIND_ATTENUATION)) {
WARN_PRINT(vformat("Invalid wind attenuation for '%s'. Area wind attenuation is not supported when using Jolt Physics. Any such value will be ignored.", to_string()));
}
} break;

View File

@ -52,13 +52,13 @@
namespace {
constexpr double DEFAULT_CONTACT_RECYCLE_RADIUS = 0.01;
constexpr double DEFAULT_CONTACT_MAX_SEPARATION = 0.05;
constexpr double DEFAULT_CONTACT_MAX_ALLOWED_PENETRATION = 0.01;
constexpr double DEFAULT_CONTACT_DEFAULT_BIAS = 0.8;
constexpr double DEFAULT_SLEEP_THRESHOLD_LINEAR = 0.1;
constexpr double DEFAULT_SLEEP_THRESHOLD_ANGULAR = 8.0 * Math::PI / 180;
constexpr double DEFAULT_SOLVER_ITERATIONS = 8;
constexpr double SPACE_DEFAULT_CONTACT_RECYCLE_RADIUS = 0.01;
constexpr double SPACE_DEFAULT_CONTACT_MAX_SEPARATION = 0.05;
constexpr double SPACE_DEFAULT_CONTACT_MAX_ALLOWED_PENETRATION = 0.01;
constexpr double SPACE_DEFAULT_CONTACT_DEFAULT_BIAS = 0.8;
constexpr double SPACE_DEFAULT_SLEEP_THRESHOLD_LINEAR = 0.1;
constexpr double SPACE_DEFAULT_SLEEP_THRESHOLD_ANGULAR = 8.0 * Math::PI / 180;
constexpr double SPACE_DEFAULT_SOLVER_ITERATIONS = 8;
} // namespace
@ -209,28 +209,28 @@ void JoltSpace3D::call_queries() {
double JoltSpace3D::get_param(PhysicsServer3D::SpaceParameter p_param) const {
switch (p_param) {
case PhysicsServer3D::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: {
return DEFAULT_CONTACT_RECYCLE_RADIUS;
return SPACE_DEFAULT_CONTACT_RECYCLE_RADIUS;
}
case PhysicsServer3D::SPACE_PARAM_CONTACT_MAX_SEPARATION: {
return DEFAULT_CONTACT_MAX_SEPARATION;
return SPACE_DEFAULT_CONTACT_MAX_SEPARATION;
}
case PhysicsServer3D::SPACE_PARAM_CONTACT_MAX_ALLOWED_PENETRATION: {
return DEFAULT_CONTACT_MAX_ALLOWED_PENETRATION;
return SPACE_DEFAULT_CONTACT_MAX_ALLOWED_PENETRATION;
}
case PhysicsServer3D::SPACE_PARAM_CONTACT_DEFAULT_BIAS: {
return DEFAULT_CONTACT_DEFAULT_BIAS;
return SPACE_DEFAULT_CONTACT_DEFAULT_BIAS;
}
case PhysicsServer3D::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD: {
return DEFAULT_SLEEP_THRESHOLD_LINEAR;
return SPACE_DEFAULT_SLEEP_THRESHOLD_LINEAR;
}
case PhysicsServer3D::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD: {
return DEFAULT_SLEEP_THRESHOLD_ANGULAR;
return SPACE_DEFAULT_SLEEP_THRESHOLD_ANGULAR;
}
case PhysicsServer3D::SPACE_PARAM_BODY_TIME_TO_SLEEP: {
return JoltProjectSettings::sleep_time_threshold;
}
case PhysicsServer3D::SPACE_PARAM_SOLVER_ITERATIONS: {
return DEFAULT_SOLVER_ITERATIONS;
return SPACE_DEFAULT_SOLVER_ITERATIONS;
}
default: {
ERR_FAIL_V_MSG(0.0, vformat("Unhandled space parameter: '%d'. This should not happen. Please report this.", p_param));

View File

@ -13,17 +13,17 @@
JPH_NAMESPACE_BEGIN
static inline const BodyLockInterface &sGetBodyLockInterface(const PhysicsSystem *inSystem, bool inLockBodies)
static inline const BodyLockInterface &sCharacterGetBodyLockInterface(const PhysicsSystem *inSystem, bool inLockBodies)
{
return inLockBodies? static_cast<const BodyLockInterface &>(inSystem->GetBodyLockInterface()) : static_cast<const BodyLockInterface &>(inSystem->GetBodyLockInterfaceNoLock());
}
static inline BodyInterface &sGetBodyInterface(PhysicsSystem *inSystem, bool inLockBodies)
static inline BodyInterface &sCharacterGetBodyInterface(PhysicsSystem *inSystem, bool inLockBodies)
{
return inLockBodies? inSystem->GetBodyInterface() : inSystem->GetBodyInterfaceNoLock();
}
static inline const NarrowPhaseQuery &sGetNarrowPhaseQuery(const PhysicsSystem *inSystem, bool inLockBodies)
static inline const NarrowPhaseQuery &sCharacterGetNarrowPhaseQuery(const PhysicsSystem *inSystem, bool inLockBodies)
{
return inLockBodies? inSystem->GetNarrowPhaseQuery() : inSystem->GetNarrowPhaseQueryNoLock();
}
@ -54,17 +54,17 @@ Character::~Character()
void Character::AddToPhysicsSystem(EActivation inActivationMode, bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).AddBody(mBodyID, inActivationMode);
sCharacterGetBodyInterface(mSystem, inLockBodies).AddBody(mBodyID, inActivationMode);
}
void Character::RemoveFromPhysicsSystem(bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).RemoveBody(mBodyID);
sCharacterGetBodyInterface(mSystem, inLockBodies).RemoveBody(mBodyID);
}
void Character::Activate(bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).ActivateBody(mBodyID);
sCharacterGetBodyInterface(mSystem, inLockBodies).ActivateBody(mBodyID);
}
void Character::CheckCollision(RMat44Arg inCenterOfMassTransform, Vec3Arg inMovementDirection, float inMaxSeparationDistance, const Shape *inShape, RVec3Arg inBaseOffset, CollideShapeCollector &ioCollector, bool inLockBodies) const
@ -95,7 +95,7 @@ void Character::CheckCollision(RMat44Arg inCenterOfMassTransform, Vec3Arg inMove
settings.mActiveEdgeMovementDirection = inMovementDirection;
settings.mBackFaceMode = EBackFaceMode::IgnoreBackFaces;
sGetNarrowPhaseQuery(mSystem, inLockBodies).CollideShape(inShape, Vec3::sOne(), inCenterOfMassTransform, settings, inBaseOffset, ioCollector, broadphase_layer_filter, object_layer_filter, body_filter);
sCharacterGetNarrowPhaseQuery(mSystem, inLockBodies).CollideShape(inShape, Vec3::sOne(), inCenterOfMassTransform, settings, inBaseOffset, ioCollector, broadphase_layer_filter, object_layer_filter, body_filter);
}
void Character::CheckCollision(RVec3Arg inPosition, QuatArg inRotation, Vec3Arg inMovementDirection, float inMaxSeparationDistance, const Shape *inShape, RVec3Arg inBaseOffset, CollideShapeCollector &ioCollector, bool inLockBodies) const
@ -112,7 +112,7 @@ void Character::CheckCollision(const Shape *inShape, float inMaxSeparationDistan
RMat44 query_transform;
Vec3 velocity;
{
BodyLockRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyID);
BodyLockRead lock(sCharacterGetBodyLockInterface(mSystem, inLockBodies), mBodyID);
if (!lock.Succeeded())
return;
@ -133,7 +133,7 @@ void Character::PostSimulation(float inMaxSeparationDistance, bool inLockBodies)
Quat char_rot;
Vec3 char_vel;
{
BodyLockRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyID);
BodyLockRead lock(sCharacterGetBodyLockInterface(mSystem, inLockBodies), mBodyID);
if (!lock.Succeeded())
return;
const Body &body = lock.GetBody();
@ -186,7 +186,7 @@ void Character::PostSimulation(float inMaxSeparationDistance, bool inLockBodies)
mGroundNormal = collector.mGroundNormal;
// Get additional data from body
BodyLockRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mGroundBodyID);
BodyLockRead lock(sCharacterGetBodyLockInterface(mSystem, inLockBodies), mGroundBodyID);
if (lock.Succeeded())
{
const Body &body = lock.GetBody();
@ -216,74 +216,74 @@ void Character::PostSimulation(float inMaxSeparationDistance, bool inLockBodies)
void Character::SetLinearAndAngularVelocity(Vec3Arg inLinearVelocity, Vec3Arg inAngularVelocity, bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).SetLinearAndAngularVelocity(mBodyID, inLinearVelocity, inAngularVelocity);
sCharacterGetBodyInterface(mSystem, inLockBodies).SetLinearAndAngularVelocity(mBodyID, inLinearVelocity, inAngularVelocity);
}
Vec3 Character::GetLinearVelocity(bool inLockBodies) const
{
return sGetBodyInterface(mSystem, inLockBodies).GetLinearVelocity(mBodyID);
return sCharacterGetBodyInterface(mSystem, inLockBodies).GetLinearVelocity(mBodyID);
}
void Character::SetLinearVelocity(Vec3Arg inLinearVelocity, bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).SetLinearVelocity(mBodyID, inLinearVelocity);
sCharacterGetBodyInterface(mSystem, inLockBodies).SetLinearVelocity(mBodyID, inLinearVelocity);
}
void Character::AddLinearVelocity(Vec3Arg inLinearVelocity, bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).AddLinearVelocity(mBodyID, inLinearVelocity);
sCharacterGetBodyInterface(mSystem, inLockBodies).AddLinearVelocity(mBodyID, inLinearVelocity);
}
void Character::AddImpulse(Vec3Arg inImpulse, bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).AddImpulse(mBodyID, inImpulse);
sCharacterGetBodyInterface(mSystem, inLockBodies).AddImpulse(mBodyID, inImpulse);
}
void Character::GetPositionAndRotation(RVec3 &outPosition, Quat &outRotation, bool inLockBodies) const
{
sGetBodyInterface(mSystem, inLockBodies).GetPositionAndRotation(mBodyID, outPosition, outRotation);
sCharacterGetBodyInterface(mSystem, inLockBodies).GetPositionAndRotation(mBodyID, outPosition, outRotation);
}
void Character::SetPositionAndRotation(RVec3Arg inPosition, QuatArg inRotation, EActivation inActivationMode, bool inLockBodies) const
{
sGetBodyInterface(mSystem, inLockBodies).SetPositionAndRotation(mBodyID, inPosition, inRotation, inActivationMode);
sCharacterGetBodyInterface(mSystem, inLockBodies).SetPositionAndRotation(mBodyID, inPosition, inRotation, inActivationMode);
}
RVec3 Character::GetPosition(bool inLockBodies) const
{
return sGetBodyInterface(mSystem, inLockBodies).GetPosition(mBodyID);
return sCharacterGetBodyInterface(mSystem, inLockBodies).GetPosition(mBodyID);
}
void Character::SetPosition(RVec3Arg inPosition, EActivation inActivationMode, bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).SetPosition(mBodyID, inPosition, inActivationMode);
sCharacterGetBodyInterface(mSystem, inLockBodies).SetPosition(mBodyID, inPosition, inActivationMode);
}
Quat Character::GetRotation(bool inLockBodies) const
{
return sGetBodyInterface(mSystem, inLockBodies).GetRotation(mBodyID);
return sCharacterGetBodyInterface(mSystem, inLockBodies).GetRotation(mBodyID);
}
void Character::SetRotation(QuatArg inRotation, EActivation inActivationMode, bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).SetRotation(mBodyID, inRotation, inActivationMode);
sCharacterGetBodyInterface(mSystem, inLockBodies).SetRotation(mBodyID, inRotation, inActivationMode);
}
RVec3 Character::GetCenterOfMassPosition(bool inLockBodies) const
{
return sGetBodyInterface(mSystem, inLockBodies).GetCenterOfMassPosition(mBodyID);
return sCharacterGetBodyInterface(mSystem, inLockBodies).GetCenterOfMassPosition(mBodyID);
}
RMat44 Character::GetWorldTransform(bool inLockBodies) const
{
return sGetBodyInterface(mSystem, inLockBodies).GetWorldTransform(mBodyID);
return sCharacterGetBodyInterface(mSystem, inLockBodies).GetWorldTransform(mBodyID);
}
void Character::SetLayer(ObjectLayer inLayer, bool inLockBodies)
{
mLayer = inLayer;
sGetBodyInterface(mSystem, inLockBodies).SetObjectLayer(mBodyID, inLayer);
sCharacterGetBodyInterface(mSystem, inLockBodies).SetObjectLayer(mBodyID, inLayer);
}
bool Character::SetShape(const Shape *inShape, float inMaxPenetrationDepth, bool inLockBodies)
@ -321,13 +321,13 @@ bool Character::SetShape(const Shape *inShape, float inMaxPenetrationDepth, bool
// Switch the shape
mShape = inShape;
sGetBodyInterface(mSystem, inLockBodies).SetShape(mBodyID, mShape, false, EActivation::Activate);
sCharacterGetBodyInterface(mSystem, inLockBodies).SetShape(mBodyID, mShape, false, EActivation::Activate);
return true;
}
TransformedShape Character::GetTransformedShape(bool inLockBodies) const
{
return sGetBodyInterface(mSystem, inLockBodies).GetTransformedShape(mBodyID);
return sCharacterGetBodyInterface(mSystem, inLockBodies).GetTransformedShape(mBodyID);
}
JPH_NAMESPACE_END

View File

@ -38,12 +38,12 @@ JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(RagdollSettings)
JPH_ADD_ATTRIBUTE(RagdollSettings, mAdditionalConstraints)
}
static inline BodyInterface &sGetBodyInterface(PhysicsSystem *inSystem, bool inLockBodies)
static inline BodyInterface &sRagdollGetBodyInterface(PhysicsSystem *inSystem, bool inLockBodies)
{
return inLockBodies? inSystem->GetBodyInterface() : inSystem->GetBodyInterfaceNoLock();
}
static inline const BodyLockInterface &sGetBodyLockInterface(const PhysicsSystem *inSystem, bool inLockBodies)
static inline const BodyLockInterface &sRagdollGetBodyLockInterface(const PhysicsSystem *inSystem, bool inLockBodies)
{
return inLockBodies? static_cast<const BodyLockInterface &>(inSystem->GetBodyLockInterface()) : static_cast<const BodyLockInterface &>(inSystem->GetBodyLockInterfaceNoLock());
}
@ -476,7 +476,7 @@ void Ragdoll::AddToPhysicsSystem(EActivation inActivationMode, bool inLockBodies
memcpy(bodies, mBodyIDs.data(), num_bodies * sizeof(BodyID));
// Insert bodies as a batch
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
BodyInterface &bi = sRagdollGetBodyInterface(mSystem, inLockBodies);
BodyInterface::AddState add_state = bi.AddBodiesPrepare(bodies, num_bodies);
bi.AddBodiesFinalize(bodies, num_bodies, add_state, inActivationMode);
}
@ -498,20 +498,20 @@ void Ragdoll::RemoveFromPhysicsSystem(bool inLockBodies)
memcpy(bodies, mBodyIDs.data(), num_bodies * sizeof(BodyID));
// Remove all bodies as a batch
sGetBodyInterface(mSystem, inLockBodies).RemoveBodies(bodies, num_bodies);
sRagdollGetBodyInterface(mSystem, inLockBodies).RemoveBodies(bodies, num_bodies);
}
}
void Ragdoll::Activate(bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).ActivateBodies(mBodyIDs.data(), (int)mBodyIDs.size());
sRagdollGetBodyInterface(mSystem, inLockBodies).ActivateBodies(mBodyIDs.data(), (int)mBodyIDs.size());
}
bool Ragdoll::IsActive(bool inLockBodies) const
{
// Lock the bodies
int body_count = (int)mBodyIDs.size();
BodyLockMultiRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
BodyLockMultiRead lock(sRagdollGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
// Test if any body is active
for (int b = 0; b < body_count; ++b)
@ -528,7 +528,7 @@ void Ragdoll::SetGroupID(CollisionGroup::GroupID inGroupID, bool inLockBodies)
{
// Lock the bodies
int body_count = (int)mBodyIDs.size();
BodyLockMultiWrite lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
BodyLockMultiWrite lock(sRagdollGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
// Update group ID
for (int b = 0; b < body_count; ++b)
@ -548,7 +548,7 @@ void Ragdoll::SetPose(const SkeletonPose &inPose, bool inLockBodies)
void Ragdoll::SetPose(RVec3Arg inRootOffset, const Mat44 *inJointMatrices, bool inLockBodies)
{
// Move bodies instantly into the correct position
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
BodyInterface &bi = sRagdollGetBodyInterface(mSystem, inLockBodies);
for (int i = 0; i < (int)mBodyIDs.size(); ++i)
{
const Mat44 &joint = inJointMatrices[i];
@ -571,7 +571,7 @@ void Ragdoll::GetPose(RVec3 &outRootOffset, Mat44 *outJointMatrices, bool inLock
int body_count = (int)mBodyIDs.size();
if (body_count == 0)
return;
BodyLockMultiRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
BodyLockMultiRead lock(sRagdollGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
// Get root matrix
const Body *root = lock.GetBody(0);
@ -604,7 +604,7 @@ void Ragdoll::DriveToPoseUsingKinematics(const SkeletonPose &inPose, float inDel
void Ragdoll::DriveToPoseUsingKinematics(RVec3Arg inRootOffset, const Mat44 *inJointMatrices, float inDeltaTime, bool inLockBodies)
{
// Move bodies into the correct position using kinematics
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
BodyInterface &bi = sRagdollGetBodyInterface(mSystem, inLockBodies);
for (int i = 0; i < (int)mBodyIDs.size(); ++i)
{
const Mat44 &joint = inJointMatrices[i];
@ -643,35 +643,35 @@ void Ragdoll::DriveToPoseUsingMotors(const SkeletonPose &inPose)
void Ragdoll::SetLinearAndAngularVelocity(Vec3Arg inLinearVelocity, Vec3Arg inAngularVelocity, bool inLockBodies)
{
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
BodyInterface &bi = sRagdollGetBodyInterface(mSystem, inLockBodies);
for (BodyID body_id : mBodyIDs)
bi.SetLinearAndAngularVelocity(body_id, inLinearVelocity, inAngularVelocity);
}
void Ragdoll::SetLinearVelocity(Vec3Arg inLinearVelocity, bool inLockBodies)
{
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
BodyInterface &bi = sRagdollGetBodyInterface(mSystem, inLockBodies);
for (BodyID body_id : mBodyIDs)
bi.SetLinearVelocity(body_id, inLinearVelocity);
}
void Ragdoll::AddLinearVelocity(Vec3Arg inLinearVelocity, bool inLockBodies)
{
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
BodyInterface &bi = sRagdollGetBodyInterface(mSystem, inLockBodies);
for (BodyID body_id : mBodyIDs)
bi.AddLinearVelocity(body_id, inLinearVelocity);
}
void Ragdoll::AddImpulse(Vec3Arg inImpulse, bool inLockBodies)
{
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
BodyInterface &bi = sRagdollGetBodyInterface(mSystem, inLockBodies);
for (BodyID body_id : mBodyIDs)
bi.AddImpulse(body_id, inImpulse);
}
void Ragdoll::GetRootTransform(RVec3 &outPosition, Quat &outRotation, bool inLockBodies) const
{
BodyLockRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs[0]);
BodyLockRead lock(sRagdollGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs[0]);
if (lock.Succeeded())
{
const Body &body = lock.GetBody();
@ -689,7 +689,7 @@ AABox Ragdoll::GetWorldSpaceBounds(bool inLockBodies) const
{
// Lock the bodies
int body_count = (int)mBodyIDs.size();
BodyLockMultiRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
BodyLockMultiRead lock(sRagdollGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
// Encapsulate all bodies
AABox bounds;