Simplify_NavMeshQueries3D::_query_task_build_path_corridor

This commit is contained in:
Kiro
2024-12-18 09:53:42 +01:00
parent bdf625bd54
commit 13f548c7f5
2 changed files with 56 additions and 76 deletions

View File

@ -272,80 +272,60 @@ void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p
begin_navigation_poly.entry = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
begin_navigation_poly.traveled_distance = 0.f;
// This is an implementation of the A* algorithm.
int least_cost_id = begin_poly->id;
int prev_least_cost_id = -1;
uint32_t least_cost_id = begin_poly->id;
bool found_route = false;
const gd::Polygon *reachable_end = nullptr;
real_t distance_to_reachable_end = FLT_MAX;
bool is_reachable = true;
real_t poly_enter_cost = 0.0;
while (true) {
const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
for (const gd::Edge &edge : navigation_polys[least_cost_id].poly->edges) {
for (const gd::Edge &edge : least_cost_poly.poly->edges) {
// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
for (uint32_t connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
const gd::Edge::Connection &connection = edge.connections[connection_index];
// Only consider the connection to another polygon if this polygon is in a region with compatible layers.
if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
continue;
}
const NavBaseIteration *owner = connection.polygon->owner;
if ((p_navigation_layers & owner->get_navigation_layers()) != 0) {
Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
const real_t new_traveled_distance = least_cost_poly.entry.distance_squared_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance;
const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
real_t poly_enter_cost = 0.0;
real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
if (prev_least_cost_id != -1 && navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) {
poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
}
prev_least_cost_id = least_cost_id;
Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
const real_t new_traveled_distance = least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance;
// Check if the neighbor polygon has already been processed.
gd::NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id];
if (neighbor_poly.poly != nullptr) {
// If the neighbor polygon hasn't been traversed yet and the new path leading to
// it is shorter, update the polygon.
if (neighbor_poly.traversable_poly_index < traversable_polys.size() &&
new_traveled_distance < neighbor_poly.traveled_distance) {
// Check if the neighbor polygon has already been processed.
gd::NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id];
if (new_traveled_distance < neighbor_poly.traveled_distance) {
// Add the polygon to the heap of polygons to traverse next.
neighbor_poly.back_navigation_poly_id = least_cost_id;
neighbor_poly.back_navigation_edge = connection.edge;
neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
neighbor_poly.traveled_distance = new_traveled_distance;
neighbor_poly.distance_to_destination =
new_entry.distance_to(end_point) *
neighbor_poly.poly->owner->get_travel_cost();
new_entry.distance_squared_to(end_point) *
owner->get_travel_cost();
neighbor_poly.entry = new_entry;
// Update the priority of the polygon in the heap.
traversable_polys.shift(neighbor_poly.traversable_poly_index);
if (neighbor_poly.poly != nullptr) {
traversable_polys.shift(neighbor_poly.traversable_poly_index);
} else {
neighbor_poly.poly = connection.polygon;
traversable_polys.push(&neighbor_poly);
}
}
} else {
// Initialize the matching navigation polygon.
neighbor_poly.poly = connection.polygon;
neighbor_poly.back_navigation_poly_id = least_cost_id;
neighbor_poly.back_navigation_edge = connection.edge;
neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
neighbor_poly.traveled_distance = new_traveled_distance;
neighbor_poly.distance_to_destination =
new_entry.distance_to(end_point) *
neighbor_poly.poly->owner->get_travel_cost();
neighbor_poly.entry = new_entry;
// Add the polygon to the heap of polygons to traverse next.
traversable_polys.push(&neighbor_poly);
}
}
}
poly_enter_cost = 0;
// When the heap of traversable polygons is empty at this point it means the end polygon is
// unreachable.
if (traversable_polys.is_empty()) {
@ -363,7 +343,7 @@ void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p
for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_target_position);
real_t dpoint = spoint.distance_to(p_target_position);
real_t dpoint = spoint.distance_squared_to(p_target_position);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
@ -375,7 +355,7 @@ void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p
for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_target_position);
real_t dpoint = spoint.distance_to(p_target_position);
real_t dpoint = spoint.distance_squared_to(p_target_position);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
@ -395,33 +375,34 @@ void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p
for (gd::NavigationPoly &nav_poly : navigation_polys) {
nav_poly.poly = nullptr;
nav_poly.traveled_distance = FLT_MAX;
}
navigation_polys[begin_poly->id].poly = begin_poly;
navigation_polys[begin_poly->id].traveled_distance = 0;
least_cost_id = begin_poly->id;
prev_least_cost_id = -1;
reachable_end = nullptr;
} else {
// Pop the polygon with the lowest travel cost from the heap of traversable polygons.
least_cost_id = traversable_polys.pop()->poly->id;
continue;
}
// Pop the polygon with the lowest travel cost from the heap of traversable polygons.
least_cost_id = traversable_polys.pop()->poly->id;
// Store the farthest reachable end polygon in case our goal is not reachable.
if (is_reachable) {
real_t distance = navigation_polys[least_cost_id].entry.distance_to(p_target_position);
if (distance_to_reachable_end > distance) {
distance_to_reachable_end = distance;
reachable_end = navigation_polys[least_cost_id].poly;
// Store the farthest reachable end polygon in case our goal is not reachable.
if (is_reachable) {
real_t distance = navigation_polys[least_cost_id].entry.distance_squared_to(p_target_position);
if (distance_to_reachable_end > distance) {
distance_to_reachable_end = distance;
reachable_end = navigation_polys[least_cost_id].poly;
}
}
}
// Check if we reached the end
if (navigation_polys[least_cost_id].poly == end_poly) {
found_route = true;
break;
// Check if we reached the end
if (navigation_polys[least_cost_id].poly == end_poly) {
found_route = true;
break;
}
if (navigation_polys[least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) {
poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
}
}
}
@ -433,7 +414,7 @@ void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p
for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
Vector3 spoint = f.get_closest_point_to(p_target_position);
real_t dpoint = spoint.distance_to(p_target_position);
real_t dpoint = spoint.distance_squared_to(p_target_position);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
@ -445,14 +426,13 @@ void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
_query_task_push_back_point_with_metadata(p_query_task, end_point, begin_poly);
p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
return;
} else {
p_query_task.end_position = end_point;
p_query_task.end_polygon = end_poly;
p_query_task.begin_position = begin_point;
p_query_task.begin_polygon = begin_poly;
p_query_task.least_cost_id = least_cost_id;
}
p_query_task.end_position = end_point;
p_query_task.end_polygon = end_poly;
p_query_task.begin_position = begin_point;
p_query_task.begin_polygon = begin_poly;
p_query_task.least_cost_id = least_cost_id;
}
void NavMeshQueries3D::query_task_map_iteration_get_path(NavMeshPathQueryTask3D &p_query_task, const NavMapIteration &p_map_iteration) {

View File

@ -152,7 +152,7 @@ struct NavigationPoly {
traversable_poly_index = UINT32_MAX;
back_navigation_poly_id = -1;
back_navigation_edge = -1;
traveled_distance = 0.0;
traveled_distance = FLT_MAX;
distance_to_destination = 0.0;
}
};